Spaces:
Sleeping
Sleeping
import math | |
import torch.nn as nn | |
from .splat import SplAtConv2d, DropBlock2D | |
from utils.learning import freeze_params | |
__all__ = ['ResNet', 'Bottleneck'] | |
_url_format = 'https://s3.us-west-1.wasabisys.com/resnest/torch/{}-{}.pth' | |
_model_sha256 = {name: checksum for checksum, name in []} | |
def short_hash(name): | |
if name not in _model_sha256: | |
raise ValueError( | |
'Pretrained model for {name} is not available.'.format(name=name)) | |
return _model_sha256[name][:8] | |
resnest_model_urls = { | |
name: _url_format.format(name, short_hash(name)) | |
for name in _model_sha256.keys() | |
} | |
class GlobalAvgPool2d(nn.Module): | |
def __init__(self): | |
"""Global average pooling over the input's spatial dimensions""" | |
super(GlobalAvgPool2d, self).__init__() | |
def forward(self, inputs): | |
return nn.functional.adaptive_avg_pool2d(inputs, | |
1).view(inputs.size(0), -1) | |
class Bottleneck(nn.Module): | |
"""ResNet Bottleneck | |
""" | |
# pylint: disable=unused-argument | |
expansion = 4 | |
def __init__(self, | |
inplanes, | |
planes, | |
stride=1, | |
downsample=None, | |
radix=1, | |
cardinality=1, | |
bottleneck_width=64, | |
avd=False, | |
avd_first=False, | |
dilation=1, | |
is_first=False, | |
rectified_conv=False, | |
rectify_avg=False, | |
norm_layer=None, | |
dropblock_prob=0.0, | |
last_gamma=False): | |
super(Bottleneck, self).__init__() | |
group_width = int(planes * (bottleneck_width / 64.)) * cardinality | |
self.conv1 = nn.Conv2d(inplanes, | |
group_width, | |
kernel_size=1, | |
bias=False) | |
self.bn1 = norm_layer(group_width) | |
self.dropblock_prob = dropblock_prob | |
self.radix = radix | |
self.avd = avd and (stride > 1 or is_first) | |
self.avd_first = avd_first | |
if self.avd: | |
self.avd_layer = nn.AvgPool2d(3, stride, padding=1) | |
stride = 1 | |
if dropblock_prob > 0.0: | |
self.dropblock1 = DropBlock2D(dropblock_prob, 3) | |
if radix == 1: | |
self.dropblock2 = DropBlock2D(dropblock_prob, 3) | |
self.dropblock3 = DropBlock2D(dropblock_prob, 3) | |
if radix >= 1: | |
self.conv2 = SplAtConv2d(group_width, | |
group_width, | |
kernel_size=3, | |
stride=stride, | |
padding=dilation, | |
dilation=dilation, | |
groups=cardinality, | |
bias=False, | |
radix=radix, | |
rectify=rectified_conv, | |
rectify_avg=rectify_avg, | |
norm_layer=norm_layer, | |
dropblock_prob=dropblock_prob) | |
elif rectified_conv: | |
from rfconv import RFConv2d | |
self.conv2 = RFConv2d(group_width, | |
group_width, | |
kernel_size=3, | |
stride=stride, | |
padding=dilation, | |
dilation=dilation, | |
groups=cardinality, | |
bias=False, | |
average_mode=rectify_avg) | |
self.bn2 = norm_layer(group_width) | |
else: | |
self.conv2 = nn.Conv2d(group_width, | |
group_width, | |
kernel_size=3, | |
stride=stride, | |
padding=dilation, | |
dilation=dilation, | |
groups=cardinality, | |
bias=False) | |
self.bn2 = norm_layer(group_width) | |
self.conv3 = nn.Conv2d(group_width, | |
planes * 4, | |
kernel_size=1, | |
bias=False) | |
self.bn3 = norm_layer(planes * 4) | |
if last_gamma: | |
from torch.nn.init import zeros_ | |
zeros_(self.bn3.weight) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.dilation = dilation | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
if self.dropblock_prob > 0.0: | |
out = self.dropblock1(out) | |
out = self.relu(out) | |
if self.avd and self.avd_first: | |
out = self.avd_layer(out) | |
out = self.conv2(out) | |
if self.radix == 0: | |
out = self.bn2(out) | |
if self.dropblock_prob > 0.0: | |
out = self.dropblock2(out) | |
out = self.relu(out) | |
if self.avd and not self.avd_first: | |
out = self.avd_layer(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.dropblock_prob > 0.0: | |
out = self.dropblock3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
"""ResNet Variants | |
Parameters | |
---------- | |
block : Block | |
Class for the residual block. Options are BasicBlockV1, BottleneckV1. | |
layers : list of int | |
Numbers of layers in each block | |
classes : int, default 1000 | |
Number of classification classes. | |
dilated : bool, default False | |
Applying dilation strategy to pretrained ResNet yielding a stride-8 model, | |
typically used in Semantic Segmentation. | |
norm_layer : object | |
Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`; | |
for Synchronized Cross-GPU BachNormalization). | |
Reference: | |
- He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. | |
- Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." | |
""" | |
# pylint: disable=unused-variable | |
def __init__(self, | |
block, | |
layers, | |
radix=1, | |
groups=1, | |
bottleneck_width=64, | |
num_classes=1000, | |
dilated=False, | |
dilation=1, | |
deep_stem=False, | |
stem_width=64, | |
avg_down=False, | |
rectified_conv=False, | |
rectify_avg=False, | |
avd=False, | |
avd_first=False, | |
final_drop=0.0, | |
dropblock_prob=0, | |
last_gamma=False, | |
norm_layer=nn.BatchNorm2d, | |
freeze_at=0): | |
self.cardinality = groups | |
self.bottleneck_width = bottleneck_width | |
# ResNet-D params | |
self.inplanes = stem_width * 2 if deep_stem else 64 | |
self.avg_down = avg_down | |
self.last_gamma = last_gamma | |
# ResNeSt params | |
self.radix = radix | |
self.avd = avd | |
self.avd_first = avd_first | |
super(ResNet, self).__init__() | |
self.rectified_conv = rectified_conv | |
self.rectify_avg = rectify_avg | |
if rectified_conv: | |
from rfconv import RFConv2d | |
conv_layer = RFConv2d | |
else: | |
conv_layer = nn.Conv2d | |
conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {} | |
if deep_stem: | |
self.conv1 = nn.Sequential( | |
conv_layer(3, | |
stem_width, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
bias=False, | |
**conv_kwargs), | |
norm_layer(stem_width), | |
nn.ReLU(inplace=True), | |
conv_layer(stem_width, | |
stem_width, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
**conv_kwargs), | |
norm_layer(stem_width), | |
nn.ReLU(inplace=True), | |
conv_layer(stem_width, | |
stem_width * 2, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
**conv_kwargs), | |
) | |
else: | |
self.conv1 = conv_layer(3, | |
64, | |
kernel_size=7, | |
stride=2, | |
padding=3, | |
bias=False, | |
**conv_kwargs) | |
self.bn1 = norm_layer(self.inplanes) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, | |
64, | |
layers[0], | |
norm_layer=norm_layer, | |
is_first=False) | |
self.layer2 = self._make_layer(block, | |
128, | |
layers[1], | |
stride=2, | |
norm_layer=norm_layer) | |
if dilated or dilation == 4: | |
self.layer3 = self._make_layer(block, | |
256, | |
layers[2], | |
stride=1, | |
dilation=2, | |
norm_layer=norm_layer, | |
dropblock_prob=dropblock_prob) | |
elif dilation == 2: | |
self.layer3 = self._make_layer(block, | |
256, | |
layers[2], | |
stride=2, | |
dilation=1, | |
norm_layer=norm_layer, | |
dropblock_prob=dropblock_prob) | |
else: | |
self.layer3 = self._make_layer(block, | |
256, | |
layers[2], | |
stride=2, | |
norm_layer=norm_layer, | |
dropblock_prob=dropblock_prob) | |
self.stem = [self.conv1, self.bn1] | |
self.stages = [self.layer1, self.layer2, self.layer3] | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, norm_layer): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
self.freeze(freeze_at) | |
def _make_layer(self, | |
block, | |
planes, | |
blocks, | |
stride=1, | |
dilation=1, | |
norm_layer=None, | |
dropblock_prob=0.0, | |
is_first=True): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
down_layers = [] | |
if self.avg_down: | |
if dilation == 1: | |
down_layers.append( | |
nn.AvgPool2d(kernel_size=stride, | |
stride=stride, | |
ceil_mode=True, | |
count_include_pad=False)) | |
else: | |
down_layers.append( | |
nn.AvgPool2d(kernel_size=1, | |
stride=1, | |
ceil_mode=True, | |
count_include_pad=False)) | |
down_layers.append( | |
nn.Conv2d(self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=1, | |
bias=False)) | |
else: | |
down_layers.append( | |
nn.Conv2d(self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False)) | |
down_layers.append(norm_layer(planes * block.expansion)) | |
downsample = nn.Sequential(*down_layers) | |
layers = [] | |
if dilation == 1 or dilation == 2: | |
layers.append( | |
block(self.inplanes, | |
planes, | |
stride, | |
downsample=downsample, | |
radix=self.radix, | |
cardinality=self.cardinality, | |
bottleneck_width=self.bottleneck_width, | |
avd=self.avd, | |
avd_first=self.avd_first, | |
dilation=1, | |
is_first=is_first, | |
rectified_conv=self.rectified_conv, | |
rectify_avg=self.rectify_avg, | |
norm_layer=norm_layer, | |
dropblock_prob=dropblock_prob, | |
last_gamma=self.last_gamma)) | |
elif dilation == 4: | |
layers.append( | |
block(self.inplanes, | |
planes, | |
stride, | |
downsample=downsample, | |
radix=self.radix, | |
cardinality=self.cardinality, | |
bottleneck_width=self.bottleneck_width, | |
avd=self.avd, | |
avd_first=self.avd_first, | |
dilation=2, | |
is_first=is_first, | |
rectified_conv=self.rectified_conv, | |
rectify_avg=self.rectify_avg, | |
norm_layer=norm_layer, | |
dropblock_prob=dropblock_prob, | |
last_gamma=self.last_gamma)) | |
else: | |
raise RuntimeError("=> unknown dilation size: {}".format(dilation)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append( | |
block(self.inplanes, | |
planes, | |
radix=self.radix, | |
cardinality=self.cardinality, | |
bottleneck_width=self.bottleneck_width, | |
avd=self.avd, | |
avd_first=self.avd_first, | |
dilation=dilation, | |
rectified_conv=self.rectified_conv, | |
rectify_avg=self.rectify_avg, | |
norm_layer=norm_layer, | |
dropblock_prob=dropblock_prob, | |
last_gamma=self.last_gamma)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
xs = [] | |
x = self.layer1(x) | |
xs.append(x) # 4X | |
x = self.layer2(x) | |
xs.append(x) # 8X | |
x = self.layer3(x) | |
xs.append(x) # 16X | |
# Following STMVOS, we drop stage 5. | |
xs.append(x) # 16X | |
return xs | |
def freeze(self, freeze_at): | |
if freeze_at >= 1: | |
for m in self.stem: | |
freeze_params(m) | |
for idx, stage in enumerate(self.stages, start=2): | |
if freeze_at >= idx: | |
freeze_params(stage) | |