Spaces:
Sleeping
Sleeping
""" | |
Creates a MobileNetV3 Model as defined in: | |
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam. (2019). | |
Searching for MobileNetV3 | |
arXiv preprint arXiv:1905.02244. | |
""" | |
import torch.nn as nn | |
import math | |
from utils.learning import freeze_params | |
def _make_divisible(v, divisor, min_value=None): | |
""" | |
This function is taken from the original tf repo. | |
It ensures that all layers have a channel number that is divisible by 8 | |
It can be seen here: | |
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py | |
:param v: | |
:param divisor: | |
:param min_value: | |
:return: | |
""" | |
if min_value is None: | |
min_value = divisor | |
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |
# Make sure that round down does not go down by more than 10%. | |
if new_v < 0.9 * v: | |
new_v += divisor | |
return new_v | |
class h_sigmoid(nn.Module): | |
def __init__(self, inplace=True): | |
super(h_sigmoid, self).__init__() | |
self.relu = nn.ReLU6(inplace=inplace) | |
def forward(self, x): | |
return self.relu(x + 3) / 6 | |
class h_swish(nn.Module): | |
def __init__(self, inplace=True): | |
super(h_swish, self).__init__() | |
self.sigmoid = h_sigmoid(inplace=inplace) | |
def forward(self, x): | |
return x * self.sigmoid(x) | |
class SELayer(nn.Module): | |
def __init__(self, channel, reduction=4): | |
super(SELayer, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Linear(channel, _make_divisible(channel // reduction, 8)), | |
nn.ReLU(inplace=True), | |
nn.Linear(_make_divisible(channel // reduction, 8), channel), | |
h_sigmoid()) | |
def forward(self, x): | |
b, c, _, _ = x.size() | |
y = self.avg_pool(x).view(b, c) | |
y = self.fc(y).view(b, c, 1, 1) | |
return x * y | |
def conv_3x3_bn(inp, oup, stride, norm_layer=nn.BatchNorm2d): | |
return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False), | |
norm_layer(oup), h_swish()) | |
def conv_1x1_bn(inp, oup, norm_layer=nn.BatchNorm2d): | |
return nn.Sequential(nn.Conv2d(inp, oup, 1, 1, 0, bias=False), | |
norm_layer(oup), h_swish()) | |
class InvertedResidual(nn.Module): | |
def __init__(self, | |
inp, | |
hidden_dim, | |
oup, | |
kernel_size, | |
stride, | |
use_se, | |
use_hs, | |
dilation=1, | |
norm_layer=nn.BatchNorm2d): | |
super(InvertedResidual, self).__init__() | |
assert stride in [1, 2] | |
self.identity = stride == 1 and inp == oup | |
if inp == hidden_dim: | |
self.conv = nn.Sequential( | |
# dw | |
nn.Conv2d(hidden_dim, | |
hidden_dim, | |
kernel_size, | |
stride, (kernel_size - 1) // 2 * dilation, | |
dilation=dilation, | |
groups=hidden_dim, | |
bias=False), | |
norm_layer(hidden_dim), | |
h_swish() if use_hs else nn.ReLU(inplace=True), | |
# Squeeze-and-Excite | |
SELayer(hidden_dim) if use_se else nn.Identity(), | |
# pw-linear | |
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | |
norm_layer(oup), | |
) | |
else: | |
self.conv = nn.Sequential( | |
# pw | |
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), | |
norm_layer(hidden_dim), | |
h_swish() if use_hs else nn.ReLU(inplace=True), | |
# dw | |
nn.Conv2d(hidden_dim, | |
hidden_dim, | |
kernel_size, | |
stride, (kernel_size - 1) // 2 * dilation, | |
dilation=dilation, | |
groups=hidden_dim, | |
bias=False), | |
norm_layer(hidden_dim), | |
# Squeeze-and-Excite | |
SELayer(hidden_dim) if use_se else nn.Identity(), | |
h_swish() if use_hs else nn.ReLU(inplace=True), | |
# pw-linear | |
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | |
norm_layer(oup), | |
) | |
def forward(self, x): | |
if self.identity: | |
return x + self.conv(x) | |
else: | |
return self.conv(x) | |
class MobileNetV3Large(nn.Module): | |
def __init__(self, | |
output_stride=16, | |
norm_layer=nn.BatchNorm2d, | |
width_mult=1., | |
freeze_at=0): | |
super(MobileNetV3Large, self).__init__() | |
""" | |
Constructs a MobileNetV3-Large model | |
""" | |
cfgs = [ | |
# k, t, c, SE, HS, s | |
[3, 1, 16, 0, 0, 1], | |
[3, 4, 24, 0, 0, 2], | |
[3, 3, 24, 0, 0, 1], | |
[5, 3, 40, 1, 0, 2], | |
[5, 3, 40, 1, 0, 1], | |
[5, 3, 40, 1, 0, 1], | |
[3, 6, 80, 0, 1, 2], | |
[3, 2.5, 80, 0, 1, 1], | |
[3, 2.3, 80, 0, 1, 1], | |
[3, 2.3, 80, 0, 1, 1], | |
[3, 6, 112, 1, 1, 1], | |
[3, 6, 112, 1, 1, 1], | |
[5, 6, 160, 1, 1, 2], | |
[5, 6, 160, 1, 1, 1], | |
[5, 6, 160, 1, 1, 1] | |
] | |
self.cfgs = cfgs | |
# building first layer | |
input_channel = _make_divisible(16 * width_mult, 8) | |
layers = [conv_3x3_bn(3, input_channel, 2, norm_layer)] | |
# building inverted residual blocks | |
block = InvertedResidual | |
now_stride = 2 | |
rate = 1 | |
for k, t, c, use_se, use_hs, s in self.cfgs: | |
if now_stride == output_stride: | |
dilation = rate | |
rate *= s | |
s = 1 | |
else: | |
dilation = 1 | |
now_stride *= s | |
output_channel = _make_divisible(c * width_mult, 8) | |
exp_size = _make_divisible(input_channel * t, 8) | |
layers.append( | |
block(input_channel, exp_size, output_channel, k, s, use_se, | |
use_hs, dilation, norm_layer)) | |
input_channel = output_channel | |
self.features = nn.Sequential(*layers) | |
self.conv = conv_1x1_bn(input_channel, exp_size, norm_layer) | |
# building last several layers | |
self._initialize_weights() | |
feature_4x = self.features[0:4] | |
feautre_8x = self.features[4:7] | |
feature_16x = self.features[7:13] | |
feature_32x = self.features[13:] | |
self.stages = [feature_4x, feautre_8x, feature_16x, feature_32x] | |
self.freeze(freeze_at) | |
def forward(self, x): | |
xs = [] | |
for stage in self.stages: | |
x = stage(x) | |
xs.append(x) | |
xs[-1] = self.conv(xs[-1]) | |
return xs | |
def _initialize_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
elif isinstance(m, nn.Linear): | |
n = m.weight.size(1) | |
m.weight.data.normal_(0, 0.01) | |
m.bias.data.zero_() | |
def freeze(self, freeze_at): | |
if freeze_at >= 1: | |
for m in self.stages[0][0]: | |
freeze_params(m) | |
for idx, stage in enumerate(self.stages, start=2): | |
if freeze_at >= idx: | |
freeze_params(stage) | |