File size: 18,784 Bytes
56598ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
<div align="center">
<img src="./.asset/grounding_dino_logo.png" width="30%">
</div>
# :sauropod: Grounding DINO
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-mscoco)](https://paperswithcode.com/sota/zero-shot-object-detection-on-mscoco?p=grounding-dino-marrying-dino-with-grounded) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-odinw)](https://paperswithcode.com/sota/zero-shot-object-detection-on-odinw?p=grounding-dino-marrying-dino-with-grounded) \
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco-minival)](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=grounding-dino-marrying-dino-with-grounded) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco)](https://paperswithcode.com/sota/object-detection-on-coco?p=grounding-dino-marrying-dino-with-grounded)
**[IDEA-CVR, IDEA-Research](https://github.com/IDEA-Research)**
[Shilong Liu](http://www.lsl.zone/), [Zhaoyang Zeng](https://scholar.google.com/citations?user=U_cvvUwAAAAJ&hl=zh-CN&oi=ao), [Tianhe Ren](https://rentainhe.github.io/), [Feng Li](https://scholar.google.com/citations?user=ybRe9GcAAAAJ&hl=zh-CN), [Hao Zhang](https://scholar.google.com/citations?user=B8hPxMQAAAAJ&hl=zh-CN), [Jie Yang](https://github.com/yangjie-cv), [Chunyuan Li](https://scholar.google.com/citations?user=Zd7WmXUAAAAJ&hl=zh-CN&oi=ao), [Jianwei Yang](https://jwyang.github.io/), [Hang Su](https://scholar.google.com/citations?hl=en&user=dxN1_X0AAAAJ&view_op=list_works&sortby=pubdate), [Jun Zhu](https://scholar.google.com/citations?hl=en&user=axsP38wAAAAJ), [Lei Zhang](https://www.leizhang.org/)<sup>:email:</sup>.
[[`Paper`](https://arxiv.org/abs/2303.05499)] [[`Demo`](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)] [[`BibTex`](#black_nib-citation)]
PyTorch implementation and pretrained models for Grounding DINO. For details, see the paper **[Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499)**.
## :sun_with_face: Helpful Tutorial
- :grapes: [[Read our arXiv Paper](https://arxiv.org/abs/2303.05499)]
- :apple: [[Watch our simple introduction video on YouTube](https://youtu.be/wxWDt5UiwY8)]
- :blossom: [[Try the Colab Demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb)]
- :sunflower: [[Try our Official Huggingface Demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)]
- :maple_leaf: [[Watch the Step by Step Tutorial about GroundingDINO by Roboflow AI](https://youtu.be/cMa77r3YrDk)]
- :mushroom: [[GroundingDINO: Automated Dataset Annotation and Evaluation by Roboflow AI](https://youtu.be/C4NqaRBz_Kw)]
- :hibiscus: [[Accelerate Image Annotation with SAM and GroundingDINO by Roboflow AI](https://youtu.be/oEQYStnF2l8)]
- :white_flower: [[Autodistill: Train YOLOv8 with ZERO Annotations based on Grounding-DINO and Grounded-SAM by Roboflow AI](https://github.com/autodistill/autodistill)]
<!-- Grounding DINO Methods |
[![arXiv](https://img.shields.io/badge/arXiv-2303.05499-b31b1b.svg)](https://arxiv.org/abs/2303.05499)
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/wxWDt5UiwY8) -->
<!-- Grounding DINO Demos |
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) -->
<!-- [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/cMa77r3YrDk)
[![HuggingFace space](https://img.shields.io/badge/🤗-HuggingFace%20Space-cyan.svg)](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/oEQYStnF2l8)
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/C4NqaRBz_Kw) -->
## :sparkles: Highlight Projects
- [Semantic-SAM: a universal image segmentation model to enable segment and recognize anything at any desired granularity.](https://github.com/UX-Decoder/Semantic-SAM),
- [DetGPT: Detect What You Need via Reasoning](https://github.com/OptimalScale/DetGPT)
- [Grounded-SAM: Marrying Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)
- [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb)
- [Grounding DINO with GLIGEN for Controllable Image Editing](demo/image_editing_with_groundingdino_gligen.ipynb)
- [OpenSeeD: A Simple and Strong Openset Segmentation Model](https://github.com/IDEA-Research/OpenSeeD)
- [SEEM: Segment Everything Everywhere All at Once](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once)
- [X-GPT: Conversational Visual Agent supported by X-Decoder](https://github.com/microsoft/X-Decoder/tree/xgpt)
- [GLIGEN: Open-Set Grounded Text-to-Image Generation](https://github.com/gligen/GLIGEN)
- [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA)
<!-- Extensions | [Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything); [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb); [Grounding DINO with GLIGEN](demo/image_editing_with_groundingdino_gligen.ipynb) -->
<!-- Official PyTorch implementation of [Grounding DINO](https://arxiv.org/abs/2303.05499), a stronger open-set object detector. Code is available now! -->
## :bulb: Highlight
- **Open-Set Detection.** Detect **everything** with language!
- **High Performancce.** COCO zero-shot **52.5 AP** (training without COCO data!). COCO fine-tune **63.0 AP**.
- **Flexible.** Collaboration with Stable Diffusion for Image Editting.
## :fire: News
- **`2023/07/18`**: We release [Semantic-SAM](https://github.com/UX-Decoder/Semantic-SAM), a universal image segmentation model to enable segment and recognize anything at any desired granularity. **Code** and **checkpoint** are available!
- **`2023/06/17`**: We provide an example to evaluate Grounding DINO on COCO zero-shot performance.
- **`2023/04/15`**: Refer to [CV in the Wild Readings](https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings) for those who are interested in open-set recognition!
- **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN) for more controllable image editings.
- **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.
- **`2023/04/06`**: We build a new demo by marrying GroundingDINO with [Segment-Anything](https://github.com/facebookresearch/segment-anything) named **[Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)** aims to support segmentation in GroundingDINO.
- **`2023/03/28`**: A YouTube [video](https://youtu.be/cMa77r3YrDk) about Grounding DINO and basic object detection prompt engineering. [[SkalskiP](https://github.com/SkalskiP)]
- **`2023/03/28`**: Add a [demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo) on Hugging Face Space!
- **`2023/03/27`**: Support CPU-only mode. Now the model can run on machines without GPUs.
- **`2023/03/25`**: A [demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) for Grounding DINO is available at Colab. [[SkalskiP](https://github.com/SkalskiP)]
- **`2023/03/22`**: Code is available Now!
<details open>
<summary><font size="4">
Description
</font></summary>
<a href="https://arxiv.org/abs/2303.05499">Paper</a> introduction.
<img src=".asset/hero_figure.png" alt="ODinW" width="100%">
Marrying <a href="https://github.com/IDEA-Research/GroundingDINO">Grounding DINO</a> and <a href="https://github.com/gligen/GLIGEN">GLIGEN</a>
<img src="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/GD_GLIGEN.png" alt="gd_gligen" width="100%">
</details>
## :star: Explanations/Tips for Grounding DINO Inputs and Outputs
- Grounding DINO accepts an `(image, text)` pair as inputs.
- It outputs `900` (by default) object boxes. Each box has similarity scores across all input words. (as shown in Figures below.)
- We defaultly choose the boxes whose highest similarities are higher than a `box_threshold`.
- We extract the words whose similarities are higher than the `text_threshold` as predicted labels.
- If you want to obtain objects of specific phrases, like the `dogs` in the sentence `two dogs with a stick.`, you can select the boxes with highest text similarities with `dogs` as final outputs.
- Note that each word can be split to **more than one** tokens with different tokenlizers. The number of words in a sentence may not equal to the number of text tokens.
- We suggest separating different category names with `.` for Grounding DINO.
![model_explain1](.asset/model_explan1.PNG)
![model_explain2](.asset/model_explan2.PNG)
## :label: TODO
- [x] Release inference code and demo.
- [x] Release checkpoints.
- [x] Grounding DINO with Stable Diffusion and GLIGEN demos.
- [ ] Release training codes.
## :hammer_and_wrench: Install
**Note:**
0. If you have a CUDA environment, please make sure the environment variable `CUDA_HOME` is set. It will be compiled under CPU-only mode if no CUDA available.
Please make sure following the installation steps strictly, otherwise the program may produce:
```bash
NameError: name '_C' is not defined
```
If this happened, please reinstalled the groundingDINO by reclone the git and do all the installation steps again.
#### how to check cuda:
```bash
echo $CUDA_HOME
```
If it print nothing, then it means you haven't set up the path/
Run this so the environment variable will be set under current shell.
```bash
export CUDA_HOME=/path/to/cuda-11.3
```
Notice the version of cuda should be aligned with your CUDA runtime, for there might exists multiple cuda at the same time.
If you want to set the CUDA_HOME permanently, store it using:
```bash
echo 'export CUDA_HOME=/path/to/cuda' >> ~/.bashrc
```
after that, source the bashrc file and check CUDA_HOME:
```bash
source ~/.bashrc
echo $CUDA_HOME
```
In this example, /path/to/cuda-11.3 should be replaced with the path where your CUDA toolkit is installed. You can find this by typing **which nvcc** in your terminal:
For instance,
if the output is /usr/local/cuda/bin/nvcc, then:
```bash
export CUDA_HOME=/usr/local/cuda
```
**Installation:**
1.Clone the GroundingDINO repository from GitHub.
```bash
git clone https://github.com/IDEA-Research/GroundingDINO.git
```
2. Change the current directory to the GroundingDINO folder.
```bash
cd GroundingDINO/
```
3. Install the required dependencies in the current directory.
```bash
pip install -e .
```
4. Download pre-trained model weights.
```bash
mkdir weights
cd weights
wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
cd ..
```
## :arrow_forward: Demo
Check your GPU ID (only if you're using a GPU)
```bash
nvidia-smi
```
Replace `{GPU ID}`, `image_you_want_to_detect.jpg`, and `"dir you want to save the output"` with appropriate values in the following command
```bash
CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
-p weights/groundingdino_swint_ogc.pth \
-i image_you_want_to_detect.jpg \
-o "dir you want to save the output" \
-t "chair"
[--cpu-only] # open it for cpu mode
```
If you would like to specify the phrases to detect, here is a demo:
```bash
CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
-p ./groundingdino_swint_ogc.pth \
-i .asset/cat_dog.jpeg \
-o logs/1111 \
-t "There is a cat and a dog in the image ." \
--token_spans "[[[9, 10], [11, 14]], [[19, 20], [21, 24]]]"
[--cpu-only] # open it for cpu mode
```
The token_spans specify the start and end positions of a phrases. For example, the first phrase is `[[9, 10], [11, 14]]`. `"There is a cat and a dog in the image ."[9:10] = 'a'`, `"There is a cat and a dog in the image ."[11:14] = 'cat'`. Hence it refers to the phrase `a cat` . Similarly, the `[[19, 20], [21, 24]]` refers to the phrase `a dog`.
See the `demo/inference_on_a_image.py` for more details.
**Running with Python:**
```python
from groundingdino.util.inference import load_model, load_image, predict, annotate
import cv2
model = load_model("groundingdino/config/GroundingDINO_SwinT_OGC.py", "weights/groundingdino_swint_ogc.pth")
IMAGE_PATH = "weights/dog-3.jpeg"
TEXT_PROMPT = "chair . person . dog ."
BOX_TRESHOLD = 0.35
TEXT_TRESHOLD = 0.25
image_source, image = load_image(IMAGE_PATH)
boxes, logits, phrases = predict(
model=model,
image=image,
caption=TEXT_PROMPT,
box_threshold=BOX_TRESHOLD,
text_threshold=TEXT_TRESHOLD
)
annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
cv2.imwrite("annotated_image.jpg", annotated_frame)
```
**Web UI**
We also provide a demo code to integrate Grounding DINO with Gradio Web UI. See the file `demo/gradio_app.py` for more details.
**Notebooks**
- We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN) for more controllable image editings.
- We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.
## COCO Zero-shot Evaluations
We provide an example to evaluate Grounding DINO zero-shot performance on COCO. The results should be **48.5**.
```bash
CUDA_VISIBLE_DEVICES=0 \
python demo/test_ap_on_coco.py \
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
-p weights/groundingdino_swint_ogc.pth \
--anno_path /path/to/annoataions/ie/instances_val2017.json \
--image_dir /path/to/imagedir/ie/val2017
```
## :luggage: Checkpoints
<!-- insert a table -->
<table>
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>backbone</th>
<th>Data</th>
<th>box AP on COCO</th>
<th>Checkpoint</th>
<th>Config</th>
</tr>
</thead>
<tbody>
<tr>
<th>1</th>
<td>GroundingDINO-T</td>
<td>Swin-T</td>
<td>O365,GoldG,Cap4M</td>
<td>48.4 (zero-shot) / 57.2 (fine-tune)</td>
<td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth">GitHub link</a> | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth">HF link</a></td>
<td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinT_OGC.py">link</a></td>
</tr>
<tr>
<th>2</th>
<td>GroundingDINO-B</td>
<td>Swin-B</td>
<td>COCO,O365,GoldG,Cap4M,OpenImage,ODinW-35,RefCOCO</td>
<td>56.7 </td>
<td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha2/groundingdino_swinb_cogcoor.pth">GitHub link</a> | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth">HF link</a>
<td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinB.cfg.py">link</a></td>
</tr>
</tbody>
</table>
## :medal_military: Results
<details open>
<summary><font size="4">
COCO Object Detection Results
</font></summary>
<img src=".asset/COCO.png" alt="COCO" width="100%">
</details>
<details open>
<summary><font size="4">
ODinW Object Detection Results
</font></summary>
<img src=".asset/ODinW.png" alt="ODinW" width="100%">
</details>
<details open>
<summary><font size="4">
Marrying Grounding DINO with <a href="https://github.com/Stability-AI/StableDiffusion">Stable Diffusion</a> for Image Editing
</font></summary>
See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_stablediffusion.ipynb">notebook</a> for more details.
<img src=".asset/GD_SD.png" alt="GD_SD" width="100%">
</details>
<details open>
<summary><font size="4">
Marrying Grounding DINO with <a href="https://github.com/gligen/GLIGEN">GLIGEN</a> for more Detailed Image Editing.
</font></summary>
See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_gligen.ipynb">notebook</a> for more details.
<img src=".asset/GD_GLIGEN.png" alt="GD_GLIGEN" width="100%">
</details>
## :sauropod: Model: Grounding DINO
Includes: a text backbone, an image backbone, a feature enhancer, a language-guided query selection, and a cross-modality decoder.
![arch](.asset/arch.png)
## :hearts: Acknowledgement
Our model is related to [DINO](https://github.com/IDEA-Research/DINO) and [GLIP](https://github.com/microsoft/GLIP). Thanks for their great work!
We also thank great previous work including DETR, Deformable DETR, SMCA, Conditional DETR, Anchor DETR, Dynamic DETR, DAB-DETR, DN-DETR, etc. More related work are available at [Awesome Detection Transformer](https://github.com/IDEACVR/awesome-detection-transformer). A new toolbox [detrex](https://github.com/IDEA-Research/detrex) is available as well.
Thanks [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) and [GLIGEN](https://github.com/gligen/GLIGEN) for their awesome models.
## :black_nib: Citation
If you find our work helpful for your research, please consider citing the following BibTeX entry.
```bibtex
@article{liu2023grounding,
title={Grounding dino: Marrying dino with grounded pre-training for open-set object detection},
author={Liu, Shilong and Zeng, Zhaoyang and Ren, Tianhe and Li, Feng and Zhang, Hao and Yang, Jie and Li, Chunyuan and Yang, Jianwei and Su, Hang and Zhu, Jun and others},
journal={arXiv preprint arXiv:2303.05499},
year={2023}
}
```
|