Upload folder using huggingface_hub
Browse files- SegTracker.py +264 -0
- aot_tracker.py +186 -0
- app.py +782 -0
- img2vid.py +26 -0
- model_args.py +28 -0
- seg_track_anything.py +300 -0
SegTracker.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append("..")
|
3 |
+
sys.path.append("./sam")
|
4 |
+
from sam.segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
5 |
+
from aot_tracker import get_aot
|
6 |
+
import numpy as np
|
7 |
+
from tool.segmentor import Segmentor
|
8 |
+
from tool.detector import Detector
|
9 |
+
from tool.transfer_tools import draw_outline, draw_points
|
10 |
+
import cv2
|
11 |
+
from seg_track_anything import draw_mask
|
12 |
+
|
13 |
+
|
14 |
+
class SegTracker():
|
15 |
+
def __init__(self,segtracker_args, sam_args, aot_args) -> None:
|
16 |
+
"""
|
17 |
+
Initialize SAM and AOT.
|
18 |
+
"""
|
19 |
+
self.sam = Segmentor(sam_args)
|
20 |
+
self.tracker = get_aot(aot_args)
|
21 |
+
self.detector = Detector(self.sam.device)
|
22 |
+
self.sam_gap = segtracker_args['sam_gap']
|
23 |
+
self.min_area = segtracker_args['min_area']
|
24 |
+
self.max_obj_num = segtracker_args['max_obj_num']
|
25 |
+
self.min_new_obj_iou = segtracker_args['min_new_obj_iou']
|
26 |
+
self.reference_objs_list = []
|
27 |
+
self.object_idx = 1
|
28 |
+
self.curr_idx = 1
|
29 |
+
self.origin_merged_mask = None # init by segment-everything or update
|
30 |
+
self.first_frame_mask = None
|
31 |
+
|
32 |
+
# debug
|
33 |
+
self.everything_points = []
|
34 |
+
self.everything_labels = []
|
35 |
+
print("SegTracker has been initialized")
|
36 |
+
|
37 |
+
def seg(self,frame):
|
38 |
+
'''
|
39 |
+
Arguments:
|
40 |
+
frame: numpy array (h,w,3)
|
41 |
+
Return:
|
42 |
+
origin_merged_mask: numpy array (h,w)
|
43 |
+
'''
|
44 |
+
frame = frame[:, :, ::-1]
|
45 |
+
anns = self.sam.everything_generator.generate(frame)
|
46 |
+
|
47 |
+
# anns is a list recording all predictions in an image
|
48 |
+
if len(anns) == 0:
|
49 |
+
return
|
50 |
+
# merge all predictions into one mask (h,w)
|
51 |
+
# note that the merged mask may lost some objects due to the overlapping
|
52 |
+
self.origin_merged_mask = np.zeros(anns[0]['segmentation'].shape,dtype=np.uint8)
|
53 |
+
idx = 1
|
54 |
+
for ann in anns:
|
55 |
+
if ann['area'] > self.min_area:
|
56 |
+
m = ann['segmentation']
|
57 |
+
self.origin_merged_mask[m==1] = idx
|
58 |
+
idx += 1
|
59 |
+
self.everything_points.append(ann["point_coords"][0])
|
60 |
+
self.everything_labels.append(1)
|
61 |
+
|
62 |
+
obj_ids = np.unique(self.origin_merged_mask)
|
63 |
+
obj_ids = obj_ids[obj_ids!=0]
|
64 |
+
|
65 |
+
self.object_idx = 1
|
66 |
+
for id in obj_ids:
|
67 |
+
if np.sum(self.origin_merged_mask==id) < self.min_area or self.object_idx > self.max_obj_num:
|
68 |
+
self.origin_merged_mask[self.origin_merged_mask==id] = 0
|
69 |
+
else:
|
70 |
+
self.origin_merged_mask[self.origin_merged_mask==id] = self.object_idx
|
71 |
+
self.object_idx += 1
|
72 |
+
|
73 |
+
self.first_frame_mask = self.origin_merged_mask
|
74 |
+
return self.origin_merged_mask
|
75 |
+
|
76 |
+
def update_origin_merged_mask(self, updated_merged_mask):
|
77 |
+
self.origin_merged_mask = updated_merged_mask
|
78 |
+
# obj_ids = np.unique(updated_merged_mask)
|
79 |
+
# obj_ids = obj_ids[obj_ids!=0]
|
80 |
+
# self.object_idx = int(max(obj_ids)) + 1
|
81 |
+
|
82 |
+
def reset_origin_merged_mask(self, mask, id):
|
83 |
+
self.origin_merged_mask = mask
|
84 |
+
self.curr_idx = id
|
85 |
+
|
86 |
+
def add_reference(self,frame,mask,frame_step=0):
|
87 |
+
'''
|
88 |
+
Add objects in a mask for tracking.
|
89 |
+
Arguments:
|
90 |
+
frame: numpy array (h,w,3)
|
91 |
+
mask: numpy array (h,w)
|
92 |
+
'''
|
93 |
+
self.reference_objs_list.append(np.unique(mask))
|
94 |
+
self.curr_idx = self.get_obj_num() + 1
|
95 |
+
self.tracker.add_reference_frame(frame,mask, self.curr_idx - 1, frame_step)
|
96 |
+
|
97 |
+
def track(self,frame,update_memory=False):
|
98 |
+
'''
|
99 |
+
Track all known objects.
|
100 |
+
Arguments:
|
101 |
+
frame: numpy array (h,w,3)
|
102 |
+
Return:
|
103 |
+
origin_merged_mask: numpy array (h,w)
|
104 |
+
'''
|
105 |
+
pred_mask = self.tracker.track(frame)
|
106 |
+
if update_memory:
|
107 |
+
self.tracker.update_memory(pred_mask)
|
108 |
+
return pred_mask.squeeze(0).squeeze(0).detach().cpu().numpy().astype(np.uint8)
|
109 |
+
|
110 |
+
def get_tracking_objs(self):
|
111 |
+
objs = set()
|
112 |
+
for ref in self.reference_objs_list:
|
113 |
+
objs.update(set(ref))
|
114 |
+
objs = list(sorted(list(objs)))
|
115 |
+
objs = [i for i in objs if i!=0]
|
116 |
+
return objs
|
117 |
+
|
118 |
+
def get_obj_num(self):
|
119 |
+
objs = self.get_tracking_objs()
|
120 |
+
if len(objs) == 0: return 0
|
121 |
+
return int(max(objs))
|
122 |
+
|
123 |
+
def find_new_objs(self, track_mask, seg_mask):
|
124 |
+
'''
|
125 |
+
Compare tracked results from AOT with segmented results from SAM. Select objects from background if they are not tracked.
|
126 |
+
Arguments:
|
127 |
+
track_mask: numpy array (h,w)
|
128 |
+
seg_mask: numpy array (h,w)
|
129 |
+
Return:
|
130 |
+
new_obj_mask: numpy array (h,w)
|
131 |
+
'''
|
132 |
+
new_obj_mask = (track_mask==0) * seg_mask
|
133 |
+
new_obj_ids = np.unique(new_obj_mask)
|
134 |
+
new_obj_ids = new_obj_ids[new_obj_ids!=0]
|
135 |
+
# obj_num = self.get_obj_num() + 1
|
136 |
+
obj_num = self.curr_idx
|
137 |
+
for idx in new_obj_ids:
|
138 |
+
new_obj_area = np.sum(new_obj_mask==idx)
|
139 |
+
obj_area = np.sum(seg_mask==idx)
|
140 |
+
if new_obj_area/obj_area < self.min_new_obj_iou or new_obj_area < self.min_area\
|
141 |
+
or obj_num > self.max_obj_num:
|
142 |
+
new_obj_mask[new_obj_mask==idx] = 0
|
143 |
+
else:
|
144 |
+
new_obj_mask[new_obj_mask==idx] = obj_num
|
145 |
+
obj_num += 1
|
146 |
+
return new_obj_mask
|
147 |
+
|
148 |
+
def restart_tracker(self):
|
149 |
+
self.tracker.restart()
|
150 |
+
|
151 |
+
def seg_acc_bbox(self, origin_frame: np.ndarray, bbox: np.ndarray,):
|
152 |
+
''''
|
153 |
+
Use bbox-prompt to get mask
|
154 |
+
Parameters:
|
155 |
+
origin_frame: H, W, C
|
156 |
+
bbox: [[x0, y0], [x1, y1]]
|
157 |
+
Return:
|
158 |
+
refined_merged_mask: numpy array (h, w)
|
159 |
+
masked_frame: numpy array (h, w, c)
|
160 |
+
'''
|
161 |
+
# get interactive_mask
|
162 |
+
interactive_mask = self.sam.segment_with_box(origin_frame, bbox)[0]
|
163 |
+
refined_merged_mask = self.add_mask(interactive_mask)
|
164 |
+
|
165 |
+
# draw mask
|
166 |
+
masked_frame = draw_mask(origin_frame.copy(), refined_merged_mask)
|
167 |
+
|
168 |
+
# draw bbox
|
169 |
+
masked_frame = cv2.rectangle(masked_frame, bbox[0], bbox[1], (0, 0, 255))
|
170 |
+
|
171 |
+
return refined_merged_mask, masked_frame
|
172 |
+
|
173 |
+
def seg_acc_click(self, origin_frame: np.ndarray, coords: np.ndarray, modes: np.ndarray, multimask=True):
|
174 |
+
'''
|
175 |
+
Use point-prompt to get mask
|
176 |
+
Parameters:
|
177 |
+
origin_frame: H, W, C
|
178 |
+
coords: nd.array [[x, y]]
|
179 |
+
modes: nd.array [[1]]
|
180 |
+
Return:
|
181 |
+
refined_merged_mask: numpy array (h, w)
|
182 |
+
masked_frame: numpy array (h, w, c)
|
183 |
+
'''
|
184 |
+
# get interactive_mask
|
185 |
+
interactive_mask = self.sam.segment_with_click(origin_frame, coords, modes, multimask)
|
186 |
+
|
187 |
+
refined_merged_mask = self.add_mask(interactive_mask)
|
188 |
+
|
189 |
+
# draw mask
|
190 |
+
masked_frame = draw_mask(origin_frame.copy(), refined_merged_mask)
|
191 |
+
|
192 |
+
# draw points
|
193 |
+
# self.everything_labels = np.array(self.everything_labels).astype(np.int64)
|
194 |
+
# self.everything_points = np.array(self.everything_points).astype(np.int64)
|
195 |
+
|
196 |
+
masked_frame = draw_points(coords, modes, masked_frame)
|
197 |
+
|
198 |
+
# draw outline
|
199 |
+
masked_frame = draw_outline(interactive_mask, masked_frame)
|
200 |
+
|
201 |
+
return refined_merged_mask, masked_frame
|
202 |
+
|
203 |
+
def add_mask(self, interactive_mask: np.ndarray):
|
204 |
+
'''
|
205 |
+
Merge interactive mask with self.origin_merged_mask
|
206 |
+
Parameters:
|
207 |
+
interactive_mask: numpy array (h, w)
|
208 |
+
Return:
|
209 |
+
refined_merged_mask: numpy array (h, w)
|
210 |
+
'''
|
211 |
+
if self.origin_merged_mask is None:
|
212 |
+
self.origin_merged_mask = np.zeros(interactive_mask.shape,dtype=np.uint8)
|
213 |
+
|
214 |
+
refined_merged_mask = self.origin_merged_mask.copy()
|
215 |
+
refined_merged_mask[interactive_mask > 0] = self.curr_idx
|
216 |
+
|
217 |
+
return refined_merged_mask
|
218 |
+
|
219 |
+
def detect_and_seg(self, origin_frame: np.ndarray, grounding_caption, box_threshold, text_threshold, box_size_threshold=1, reset_image=False):
|
220 |
+
'''
|
221 |
+
Using Grounding-DINO to detect object acc Text-prompts
|
222 |
+
Retrun:
|
223 |
+
refined_merged_mask: numpy array (h, w)
|
224 |
+
annotated_frame: numpy array (h, w, 3)
|
225 |
+
'''
|
226 |
+
# backup id and origin-merged-mask
|
227 |
+
bc_id = self.curr_idx
|
228 |
+
bc_mask = self.origin_merged_mask
|
229 |
+
|
230 |
+
# get annotated_frame and boxes
|
231 |
+
annotated_frame, boxes = self.detector.run_grounding(origin_frame, grounding_caption, box_threshold, text_threshold)
|
232 |
+
for i in range(len(boxes)):
|
233 |
+
bbox = boxes[i]
|
234 |
+
if (bbox[1][0] - bbox[0][0]) * (bbox[1][1] - bbox[0][1]) > annotated_frame.shape[0] * annotated_frame.shape[1] * box_size_threshold:
|
235 |
+
continue
|
236 |
+
interactive_mask = self.sam.segment_with_box(origin_frame, bbox, reset_image)[0]
|
237 |
+
refined_merged_mask = self.add_mask(interactive_mask)
|
238 |
+
self.update_origin_merged_mask(refined_merged_mask)
|
239 |
+
self.curr_idx += 1
|
240 |
+
|
241 |
+
# reset origin_mask
|
242 |
+
self.reset_origin_merged_mask(bc_mask, bc_id)
|
243 |
+
|
244 |
+
return refined_merged_mask, annotated_frame
|
245 |
+
|
246 |
+
if __name__ == '__main__':
|
247 |
+
from model_args import segtracker_args,sam_args,aot_args
|
248 |
+
|
249 |
+
Seg_Tracker = SegTracker(segtracker_args, sam_args, aot_args)
|
250 |
+
|
251 |
+
# ------------------ detect test ----------------------
|
252 |
+
|
253 |
+
origin_frame = cv2.imread('/data2/cym/Seg_Tra_any/Segment-and-Track-Anything/debug/point.png')
|
254 |
+
origin_frame = cv2.cvtColor(origin_frame, cv2.COLOR_BGR2RGB)
|
255 |
+
grounding_caption = "swan.water"
|
256 |
+
box_threshold = 0.25
|
257 |
+
text_threshold = 0.25
|
258 |
+
|
259 |
+
predicted_mask, annotated_frame = Seg_Tracker.detect_and_seg(origin_frame, grounding_caption, box_threshold, text_threshold)
|
260 |
+
masked_frame = draw_mask(annotated_frame, predicted_mask)
|
261 |
+
origin_frame = cv2.cvtColor(origin_frame, cv2.COLOR_RGB2BGR)
|
262 |
+
|
263 |
+
cv2.imwrite('./debug/masked_frame.png', masked_frame)
|
264 |
+
cv2.imwrite('./debug/x.png', annotated_frame)
|
aot_tracker.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from statistics import mode
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
sys.path.append("./aot")
|
7 |
+
from aot.networks.engines.aot_engine import AOTEngine,AOTInferEngine
|
8 |
+
from aot.networks.engines.deaot_engine import DeAOTEngine,DeAOTInferEngine
|
9 |
+
import importlib
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
from skimage.morphology.binary import binary_dilation
|
13 |
+
|
14 |
+
|
15 |
+
np.random.seed(200)
|
16 |
+
_palette = ((np.random.random((3*255))*0.7+0.3)*255).astype(np.uint8).tolist()
|
17 |
+
_palette = [0,0,0]+_palette
|
18 |
+
|
19 |
+
import aot.dataloaders.video_transforms as tr
|
20 |
+
from aot.utils.checkpoint import load_network
|
21 |
+
from aot.networks.models import build_vos_model
|
22 |
+
from aot.networks.engines import build_engine
|
23 |
+
from torchvision import transforms
|
24 |
+
|
25 |
+
class AOTTracker(object):
|
26 |
+
def __init__(self, cfg, gpu_id=0):
|
27 |
+
self.gpu_id = gpu_id
|
28 |
+
self.model = build_vos_model(cfg.MODEL_VOS, cfg).cuda(gpu_id)
|
29 |
+
self.model, _ = load_network(self.model, cfg.TEST_CKPT_PATH, gpu_id)
|
30 |
+
# self.engine = self.build_tracker_engine(cfg.MODEL_ENGINE,
|
31 |
+
# aot_model=self.model,
|
32 |
+
# gpu_id=gpu_id,
|
33 |
+
# short_term_mem_skip=4,
|
34 |
+
# long_term_mem_gap=cfg.TEST_LONG_TERM_MEM_GAP)
|
35 |
+
self.engine = build_engine(cfg.MODEL_ENGINE,
|
36 |
+
phase='eval',
|
37 |
+
aot_model=self.model,
|
38 |
+
gpu_id=gpu_id,
|
39 |
+
short_term_mem_skip=1,
|
40 |
+
long_term_mem_gap=cfg.TEST_LONG_TERM_MEM_GAP,
|
41 |
+
max_len_long_term=cfg.MAX_LEN_LONG_TERM)
|
42 |
+
|
43 |
+
self.transform = transforms.Compose([
|
44 |
+
tr.MultiRestrictSize(cfg.TEST_MAX_SHORT_EDGE,
|
45 |
+
cfg.TEST_MAX_LONG_EDGE, cfg.TEST_FLIP,
|
46 |
+
cfg.TEST_MULTISCALE, cfg.MODEL_ALIGN_CORNERS),
|
47 |
+
tr.MultiToTensor()
|
48 |
+
])
|
49 |
+
|
50 |
+
self.model.eval()
|
51 |
+
|
52 |
+
@torch.no_grad()
|
53 |
+
def add_reference_frame(self, frame, mask, obj_nums, frame_step, incremental=False):
|
54 |
+
# mask = cv2.resize(mask, frame.shape[:2][::-1], interpolation = cv2.INTER_NEAREST)
|
55 |
+
|
56 |
+
sample = {
|
57 |
+
'current_img': frame,
|
58 |
+
'current_label': mask,
|
59 |
+
}
|
60 |
+
|
61 |
+
sample = self.transform(sample)
|
62 |
+
frame = sample[0]['current_img'].unsqueeze(0).float().cuda(self.gpu_id)
|
63 |
+
mask = sample[0]['current_label'].unsqueeze(0).float().cuda(self.gpu_id)
|
64 |
+
_mask = F.interpolate(mask,size=frame.shape[-2:],mode='nearest')
|
65 |
+
|
66 |
+
if incremental:
|
67 |
+
self.engine.add_reference_frame_incremental(frame, _mask, obj_nums=obj_nums, frame_step=frame_step)
|
68 |
+
else:
|
69 |
+
self.engine.add_reference_frame(frame, _mask, obj_nums=obj_nums, frame_step=frame_step)
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
@torch.no_grad()
|
74 |
+
def track(self, image):
|
75 |
+
output_height, output_width = image.shape[0], image.shape[1]
|
76 |
+
sample = {'current_img': image}
|
77 |
+
sample = self.transform(sample)
|
78 |
+
image = sample[0]['current_img'].unsqueeze(0).float().cuda(self.gpu_id)
|
79 |
+
self.engine.match_propogate_one_frame(image)
|
80 |
+
pred_logit = self.engine.decode_current_logits((output_height, output_width))
|
81 |
+
|
82 |
+
# pred_prob = torch.softmax(pred_logit, dim=1)
|
83 |
+
pred_label = torch.argmax(pred_logit, dim=1,
|
84 |
+
keepdim=True).float()
|
85 |
+
|
86 |
+
return pred_label
|
87 |
+
|
88 |
+
@torch.no_grad()
|
89 |
+
def update_memory(self, pred_label):
|
90 |
+
self.engine.update_memory(pred_label)
|
91 |
+
|
92 |
+
@torch.no_grad()
|
93 |
+
def restart(self):
|
94 |
+
self.engine.restart_engine()
|
95 |
+
|
96 |
+
@torch.no_grad()
|
97 |
+
def build_tracker_engine(self, name, **kwargs):
|
98 |
+
if name == 'aotengine':
|
99 |
+
return AOTTrackerInferEngine(**kwargs)
|
100 |
+
elif name == 'deaotengine':
|
101 |
+
return DeAOTTrackerInferEngine(**kwargs)
|
102 |
+
else:
|
103 |
+
raise NotImplementedError
|
104 |
+
|
105 |
+
|
106 |
+
class AOTTrackerInferEngine(AOTInferEngine):
|
107 |
+
def __init__(self, aot_model, gpu_id=0, long_term_mem_gap=9999, short_term_mem_skip=1, max_aot_obj_num=None):
|
108 |
+
super().__init__(aot_model, gpu_id, long_term_mem_gap, short_term_mem_skip, max_aot_obj_num)
|
109 |
+
def add_reference_frame_incremental(self, img, mask, obj_nums, frame_step=-1):
|
110 |
+
if isinstance(obj_nums, list):
|
111 |
+
obj_nums = obj_nums[0]
|
112 |
+
self.obj_nums = obj_nums
|
113 |
+
aot_num = max(np.ceil(obj_nums / self.max_aot_obj_num), 1)
|
114 |
+
while (aot_num > len(self.aot_engines)):
|
115 |
+
new_engine = AOTEngine(self.AOT, self.gpu_id,
|
116 |
+
self.long_term_mem_gap,
|
117 |
+
self.short_term_mem_skip)
|
118 |
+
new_engine.eval()
|
119 |
+
self.aot_engines.append(new_engine)
|
120 |
+
|
121 |
+
separated_masks, separated_obj_nums = self.separate_mask(
|
122 |
+
mask, obj_nums)
|
123 |
+
img_embs = None
|
124 |
+
for aot_engine, separated_mask, separated_obj_num in zip(
|
125 |
+
self.aot_engines, separated_masks, separated_obj_nums):
|
126 |
+
if aot_engine.obj_nums is None or aot_engine.obj_nums[0] < separated_obj_num:
|
127 |
+
aot_engine.add_reference_frame(img,
|
128 |
+
separated_mask,
|
129 |
+
obj_nums=[separated_obj_num],
|
130 |
+
frame_step=frame_step,
|
131 |
+
img_embs=img_embs)
|
132 |
+
else:
|
133 |
+
aot_engine.update_short_term_memory(separated_mask)
|
134 |
+
|
135 |
+
if img_embs is None: # reuse image embeddings
|
136 |
+
img_embs = aot_engine.curr_enc_embs
|
137 |
+
|
138 |
+
self.update_size()
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
class DeAOTTrackerInferEngine(DeAOTInferEngine):
|
143 |
+
def __init__(self, aot_model, gpu_id=0, long_term_mem_gap=9999, short_term_mem_skip=1, max_aot_obj_num=None):
|
144 |
+
super().__init__(aot_model, gpu_id, long_term_mem_gap, short_term_mem_skip, max_aot_obj_num)
|
145 |
+
def add_reference_frame_incremental(self, img, mask, obj_nums, frame_step=-1):
|
146 |
+
if isinstance(obj_nums, list):
|
147 |
+
obj_nums = obj_nums[0]
|
148 |
+
self.obj_nums = obj_nums
|
149 |
+
aot_num = max(np.ceil(obj_nums / self.max_aot_obj_num), 1)
|
150 |
+
while (aot_num > len(self.aot_engines)):
|
151 |
+
new_engine = DeAOTEngine(self.AOT, self.gpu_id,
|
152 |
+
self.long_term_mem_gap,
|
153 |
+
self.short_term_mem_skip)
|
154 |
+
new_engine.eval()
|
155 |
+
self.aot_engines.append(new_engine)
|
156 |
+
|
157 |
+
separated_masks, separated_obj_nums = self.separate_mask(
|
158 |
+
mask, obj_nums)
|
159 |
+
img_embs = None
|
160 |
+
for aot_engine, separated_mask, separated_obj_num in zip(
|
161 |
+
self.aot_engines, separated_masks, separated_obj_nums):
|
162 |
+
if aot_engine.obj_nums is None or aot_engine.obj_nums[0] < separated_obj_num:
|
163 |
+
aot_engine.add_reference_frame(img,
|
164 |
+
separated_mask,
|
165 |
+
obj_nums=[separated_obj_num],
|
166 |
+
frame_step=frame_step,
|
167 |
+
img_embs=img_embs)
|
168 |
+
else:
|
169 |
+
aot_engine.update_short_term_memory(separated_mask)
|
170 |
+
|
171 |
+
if img_embs is None: # reuse image embeddings
|
172 |
+
img_embs = aot_engine.curr_enc_embs
|
173 |
+
|
174 |
+
self.update_size()
|
175 |
+
|
176 |
+
|
177 |
+
def get_aot(args):
|
178 |
+
# build vos engine
|
179 |
+
engine_config = importlib.import_module('configs.' + 'pre_ytb_dav')
|
180 |
+
cfg = engine_config.EngineConfig(args['phase'], args['model'])
|
181 |
+
cfg.TEST_CKPT_PATH = args['model_path']
|
182 |
+
cfg.TEST_LONG_TERM_MEM_GAP = args['long_term_mem_gap']
|
183 |
+
cfg.MAX_LEN_LONG_TERM = args['max_len_long_term']
|
184 |
+
# init AOTTracker
|
185 |
+
tracker = AOTTracker(cfg, args['gpu_id'])
|
186 |
+
return tracker
|
app.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL.ImageOps import colorize, scale
|
2 |
+
import gradio as gr
|
3 |
+
import importlib
|
4 |
+
import sys
|
5 |
+
import os
|
6 |
+
|
7 |
+
from matplotlib.pyplot import step
|
8 |
+
|
9 |
+
from model_args import segtracker_args,sam_args,aot_args
|
10 |
+
from SegTracker import SegTracker
|
11 |
+
|
12 |
+
# sys.path.append('.')
|
13 |
+
# sys.path.append('..')
|
14 |
+
|
15 |
+
import cv2
|
16 |
+
from PIL import Image
|
17 |
+
from skimage.morphology.binary import binary_dilation
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import time
|
21 |
+
from seg_track_anything import aot_model2ckpt, tracking_objects_in_video, draw_mask
|
22 |
+
import gc
|
23 |
+
import numpy as np
|
24 |
+
import json
|
25 |
+
from tool.transfer_tools import mask2bbox
|
26 |
+
|
27 |
+
def clean():
|
28 |
+
return None, None, None, None, None, None, [[], []]
|
29 |
+
|
30 |
+
def get_click_prompt(click_stack, point):
|
31 |
+
|
32 |
+
click_stack[0].append(point["coord"])
|
33 |
+
click_stack[1].append(point["mode"]
|
34 |
+
)
|
35 |
+
|
36 |
+
prompt = {
|
37 |
+
"points_coord":click_stack[0],
|
38 |
+
"points_mode":click_stack[1],
|
39 |
+
"multimask":"True",
|
40 |
+
}
|
41 |
+
|
42 |
+
return prompt
|
43 |
+
|
44 |
+
def get_meta_from_video(input_video):
|
45 |
+
if input_video is None:
|
46 |
+
return None, None, None, ""
|
47 |
+
|
48 |
+
print("get meta information of input video")
|
49 |
+
cap = cv2.VideoCapture(input_video)
|
50 |
+
|
51 |
+
_, first_frame = cap.read()
|
52 |
+
cap.release()
|
53 |
+
|
54 |
+
first_frame = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
55 |
+
|
56 |
+
return first_frame, first_frame, first_frame, ""
|
57 |
+
|
58 |
+
def get_meta_from_img_seq(input_img_seq):
|
59 |
+
if input_img_seq is None:
|
60 |
+
return None, None, None, ""
|
61 |
+
|
62 |
+
print("get meta information of img seq")
|
63 |
+
# Create dir
|
64 |
+
file_name = input_img_seq.name.split('/')[-1].split('.')[0]
|
65 |
+
file_path = f'./assets/{file_name}'
|
66 |
+
if os.path.isdir(file_path):
|
67 |
+
os.system(f'rm -r {file_path}')
|
68 |
+
os.makedirs(file_path)
|
69 |
+
# Unzip file
|
70 |
+
os.system(f'unzip {input_img_seq.name} -d ./assets ')
|
71 |
+
|
72 |
+
imgs_path = sorted([os.path.join(file_path, img_name) for img_name in os.listdir(file_path)])
|
73 |
+
first_frame = imgs_path[0]
|
74 |
+
first_frame = cv2.imread(first_frame)
|
75 |
+
first_frame = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
76 |
+
|
77 |
+
return first_frame, first_frame, first_frame
|
78 |
+
|
79 |
+
def SegTracker_add_first_frame(Seg_Tracker, origin_frame, predicted_mask):
|
80 |
+
with torch.cuda.amp.autocast():
|
81 |
+
# Reset the first frame's mask
|
82 |
+
frame_idx = 0
|
83 |
+
Seg_Tracker.restart_tracker()
|
84 |
+
Seg_Tracker.add_reference(origin_frame, predicted_mask, frame_idx)
|
85 |
+
Seg_Tracker.first_frame_mask = predicted_mask
|
86 |
+
|
87 |
+
return Seg_Tracker
|
88 |
+
|
89 |
+
def init_SegTracker(aot_model, long_term_mem, max_len_long_term, sam_gap, max_obj_num, points_per_side, origin_frame):
|
90 |
+
|
91 |
+
if origin_frame is None:
|
92 |
+
return None, origin_frame, [[], []], ""
|
93 |
+
|
94 |
+
# reset aot args
|
95 |
+
aot_args["model"] = aot_model
|
96 |
+
aot_args["model_path"] = aot_model2ckpt[aot_model]
|
97 |
+
aot_args["long_term_mem_gap"] = long_term_mem
|
98 |
+
aot_args["max_len_long_term"] = max_len_long_term
|
99 |
+
# reset sam args
|
100 |
+
segtracker_args["sam_gap"] = sam_gap
|
101 |
+
segtracker_args["max_obj_num"] = max_obj_num
|
102 |
+
sam_args["generator_args"]["points_per_side"] = points_per_side
|
103 |
+
|
104 |
+
Seg_Tracker = SegTracker(segtracker_args, sam_args, aot_args)
|
105 |
+
Seg_Tracker.restart_tracker()
|
106 |
+
|
107 |
+
return Seg_Tracker, origin_frame, [[], []], ""
|
108 |
+
|
109 |
+
def init_SegTracker_Stroke(aot_model, long_term_mem, max_len_long_term, sam_gap, max_obj_num, points_per_side, origin_frame):
|
110 |
+
|
111 |
+
if origin_frame is None:
|
112 |
+
return None, origin_frame, [[], []], origin_frame
|
113 |
+
|
114 |
+
# reset aot args
|
115 |
+
aot_args["model"] = aot_model
|
116 |
+
aot_args["model_path"] = aot_model2ckpt[aot_model]
|
117 |
+
aot_args["long_term_mem_gap"] = long_term_mem
|
118 |
+
aot_args["max_len_long_term"] = max_len_long_term
|
119 |
+
|
120 |
+
# reset sam args
|
121 |
+
segtracker_args["sam_gap"] = sam_gap
|
122 |
+
segtracker_args["max_obj_num"] = max_obj_num
|
123 |
+
sam_args["generator_args"]["points_per_side"] = points_per_side
|
124 |
+
|
125 |
+
Seg_Tracker = SegTracker(segtracker_args, sam_args, aot_args)
|
126 |
+
Seg_Tracker.restart_tracker()
|
127 |
+
return Seg_Tracker, origin_frame, [[], []], origin_frame
|
128 |
+
|
129 |
+
def undo_click_stack_and_refine_seg(Seg_Tracker, origin_frame, click_stack, aot_model, long_term_mem, max_len_long_term, sam_gap, max_obj_num, points_per_side):
|
130 |
+
|
131 |
+
if Seg_Tracker is None:
|
132 |
+
return Seg_Tracker, origin_frame, [[], []]
|
133 |
+
|
134 |
+
print("Undo!")
|
135 |
+
if len(click_stack[0]) > 0:
|
136 |
+
click_stack[0] = click_stack[0][: -1]
|
137 |
+
click_stack[1] = click_stack[1][: -1]
|
138 |
+
|
139 |
+
if len(click_stack[0]) > 0:
|
140 |
+
prompt = {
|
141 |
+
"points_coord":click_stack[0],
|
142 |
+
"points_mode":click_stack[1],
|
143 |
+
"multimask":"True",
|
144 |
+
}
|
145 |
+
|
146 |
+
masked_frame = seg_acc_click(Seg_Tracker, prompt, origin_frame)
|
147 |
+
return Seg_Tracker, masked_frame, click_stack
|
148 |
+
else:
|
149 |
+
return Seg_Tracker, origin_frame, [[], []]
|
150 |
+
|
151 |
+
|
152 |
+
def seg_acc_click(Seg_Tracker, prompt, origin_frame):
|
153 |
+
# seg acc to click
|
154 |
+
predicted_mask, masked_frame = Seg_Tracker.seg_acc_click(
|
155 |
+
origin_frame=origin_frame,
|
156 |
+
coords=np.array(prompt["points_coord"]),
|
157 |
+
modes=np.array(prompt["points_mode"]),
|
158 |
+
multimask=prompt["multimask"],
|
159 |
+
)
|
160 |
+
|
161 |
+
Seg_Tracker = SegTracker_add_first_frame(Seg_Tracker, origin_frame, predicted_mask)
|
162 |
+
|
163 |
+
return masked_frame
|
164 |
+
|
165 |
+
def sam_click(Seg_Tracker, origin_frame, point_mode, click_stack, aot_model, long_term_mem, max_len_long_term, sam_gap, max_obj_num, points_per_side, evt:gr.SelectData):
|
166 |
+
"""
|
167 |
+
Args:
|
168 |
+
origin_frame: nd.array
|
169 |
+
click_stack: [[coordinate], [point_mode]]
|
170 |
+
"""
|
171 |
+
|
172 |
+
print("Click")
|
173 |
+
|
174 |
+
if point_mode == "Positive":
|
175 |
+
point = {"coord": [evt.index[0], evt.index[1]], "mode": 1}
|
176 |
+
else:
|
177 |
+
# TODO:add everything positive points
|
178 |
+
point = {"coord": [evt.index[0], evt.index[1]], "mode": 0}
|
179 |
+
|
180 |
+
if Seg_Tracker is None:
|
181 |
+
Seg_Tracker, _, _, _ = init_SegTracker(aot_model, long_term_mem, max_len_long_term, sam_gap, max_obj_num, points_per_side, origin_frame)
|
182 |
+
|
183 |
+
# get click prompts for sam to predict mask
|
184 |
+
click_prompt = get_click_prompt(click_stack, point)
|
185 |
+
|
186 |
+
# Refine acc to prompt
|
187 |
+
masked_frame = seg_acc_click(Seg_Tracker, click_prompt, origin_frame)
|
188 |
+
|
189 |
+
return Seg_Tracker, masked_frame, click_stack
|
190 |
+
|
191 |
+
def sam_stroke(Seg_Tracker, origin_frame, drawing_board, aot_model, long_term_mem, max_len_long_term, sam_gap, max_obj_num, points_per_side):
|
192 |
+
|
193 |
+
if Seg_Tracker is None:
|
194 |
+
Seg_Tracker, _ , _, _ = init_SegTracker(aot_model, long_term_mem, max_len_long_term, sam_gap, max_obj_num, points_per_side, origin_frame)
|
195 |
+
|
196 |
+
print("Stroke")
|
197 |
+
mask = drawing_board["mask"]
|
198 |
+
bbox = mask2bbox(mask[:, :, 0]) # bbox: [[x0, y0], [x1, y1]]
|
199 |
+
predicted_mask, masked_frame = Seg_Tracker.seg_acc_bbox(origin_frame, bbox)
|
200 |
+
|
201 |
+
Seg_Tracker = SegTracker_add_first_frame(Seg_Tracker, origin_frame, predicted_mask)
|
202 |
+
|
203 |
+
return Seg_Tracker, masked_frame, origin_frame
|
204 |
+
|
205 |
+
def gd_detect(Seg_Tracker, origin_frame, grounding_caption, box_threshold, text_threshold, aot_model, long_term_mem, max_len_long_term, sam_gap, max_obj_num, points_per_side):
|
206 |
+
if Seg_Tracker is None:
|
207 |
+
Seg_Tracker, _ , _, _ = init_SegTracker(aot_model, long_term_mem, max_len_long_term, sam_gap, max_obj_num, points_per_side, origin_frame)
|
208 |
+
|
209 |
+
print("Detect")
|
210 |
+
predicted_mask, annotated_frame= Seg_Tracker.detect_and_seg(origin_frame, grounding_caption, box_threshold, text_threshold)
|
211 |
+
|
212 |
+
Seg_Tracker = SegTracker_add_first_frame(Seg_Tracker, origin_frame, predicted_mask)
|
213 |
+
|
214 |
+
|
215 |
+
masked_frame = draw_mask(annotated_frame, predicted_mask)
|
216 |
+
|
217 |
+
return Seg_Tracker, masked_frame, origin_frame
|
218 |
+
|
219 |
+
def segment_everything(Seg_Tracker, aot_model, long_term_mem, max_len_long_term, origin_frame, sam_gap, max_obj_num, points_per_side):
|
220 |
+
|
221 |
+
if Seg_Tracker is None:
|
222 |
+
Seg_Tracker, _ , _, _ = init_SegTracker(aot_model, long_term_mem, max_len_long_term, sam_gap, max_obj_num, points_per_side, origin_frame)
|
223 |
+
|
224 |
+
print("Everything")
|
225 |
+
|
226 |
+
frame_idx = 0
|
227 |
+
|
228 |
+
with torch.cuda.amp.autocast():
|
229 |
+
pred_mask = Seg_Tracker.seg(origin_frame)
|
230 |
+
torch.cuda.empty_cache()
|
231 |
+
gc.collect()
|
232 |
+
Seg_Tracker.add_reference(origin_frame, pred_mask, frame_idx)
|
233 |
+
Seg_Tracker.first_frame_mask = pred_mask
|
234 |
+
|
235 |
+
masked_frame = draw_mask(origin_frame.copy(), pred_mask)
|
236 |
+
|
237 |
+
return Seg_Tracker, masked_frame
|
238 |
+
|
239 |
+
def add_new_object(Seg_Tracker):
|
240 |
+
|
241 |
+
prev_mask = Seg_Tracker.first_frame_mask
|
242 |
+
Seg_Tracker.update_origin_merged_mask(prev_mask)
|
243 |
+
Seg_Tracker.curr_idx += 1
|
244 |
+
|
245 |
+
print("Ready to add new object!")
|
246 |
+
|
247 |
+
return Seg_Tracker, [[], []]
|
248 |
+
|
249 |
+
def tracking_objects(Seg_Tracker, input_video, input_img_seq, fps):
|
250 |
+
print("Start tracking !")
|
251 |
+
return tracking_objects_in_video(Seg_Tracker, input_video, input_img_seq, fps)
|
252 |
+
|
253 |
+
def seg_track_app():
|
254 |
+
|
255 |
+
##########################################################
|
256 |
+
###################### Front-end ########################
|
257 |
+
##########################################################
|
258 |
+
app = gr.Blocks()
|
259 |
+
|
260 |
+
with app:
|
261 |
+
gr.Markdown(
|
262 |
+
'''
|
263 |
+
<div style="text-align:center;">
|
264 |
+
<span style="font-size:3em; font-weight:bold;">Segment and Track Anything(SAM-Track)</span>
|
265 |
+
</div>
|
266 |
+
'''
|
267 |
+
)
|
268 |
+
|
269 |
+
click_stack = gr.State([[],[]]) # Storage clicks status
|
270 |
+
origin_frame = gr.State(None)
|
271 |
+
Seg_Tracker = gr.State(None)
|
272 |
+
|
273 |
+
aot_model = gr.State(None)
|
274 |
+
sam_gap = gr.State(None)
|
275 |
+
points_per_side = gr.State(None)
|
276 |
+
max_obj_num = gr.State(None)
|
277 |
+
|
278 |
+
with gr.Row():
|
279 |
+
# video input
|
280 |
+
with gr.Column(scale=0.5):
|
281 |
+
|
282 |
+
tab_video_input = gr.Tab(label="Video type input")
|
283 |
+
with tab_video_input:
|
284 |
+
input_video = gr.Video(label='Input video').style(height=550)
|
285 |
+
|
286 |
+
tab_img_seq_input = gr.Tab(label="Image-Seq type input")
|
287 |
+
with tab_img_seq_input:
|
288 |
+
with gr.Row():
|
289 |
+
input_img_seq = gr.File(label='Input Image-Seq').style(height=550)
|
290 |
+
with gr.Column(scale=0.25):
|
291 |
+
extract_button = gr.Button(value="extract")
|
292 |
+
fps = gr.Slider(label='fps', minimum=5, maximum=50, value=8, step=1)
|
293 |
+
|
294 |
+
input_first_frame = gr.Image(label='Segment result of first frame',interactive=True).style(height=550)
|
295 |
+
|
296 |
+
|
297 |
+
tab_everything = gr.Tab(label="Everything")
|
298 |
+
with tab_everything:
|
299 |
+
with gr.Row():
|
300 |
+
seg_every_first_frame = gr.Button(value="Segment everything for first frame", interactive=True)
|
301 |
+
point_mode = gr.Radio(
|
302 |
+
choices=["Positive"],
|
303 |
+
value="Positive",
|
304 |
+
label="Point Prompt",
|
305 |
+
interactive=True)
|
306 |
+
|
307 |
+
every_undo_but = gr.Button(
|
308 |
+
value="Undo",
|
309 |
+
interactive=True
|
310 |
+
)
|
311 |
+
|
312 |
+
# every_reset_but = gr.Button(
|
313 |
+
# value="Reset",
|
314 |
+
# interactive=True
|
315 |
+
# )
|
316 |
+
|
317 |
+
tab_click = gr.Tab(label="Click")
|
318 |
+
with tab_click:
|
319 |
+
with gr.Row():
|
320 |
+
point_mode = gr.Radio(
|
321 |
+
choices=["Positive", "Negative"],
|
322 |
+
value="Positive",
|
323 |
+
label="Point Prompt",
|
324 |
+
interactive=True)
|
325 |
+
|
326 |
+
# args for modify and tracking
|
327 |
+
click_undo_but = gr.Button(
|
328 |
+
value="Undo",
|
329 |
+
interactive=True
|
330 |
+
)
|
331 |
+
# click_reset_but = gr.Button(
|
332 |
+
# value="Reset",
|
333 |
+
# interactive=True
|
334 |
+
# )
|
335 |
+
|
336 |
+
tab_stroke = gr.Tab(label="Stroke")
|
337 |
+
with tab_stroke:
|
338 |
+
drawing_board = gr.Image(label='Drawing Board', tool="sketch", brush_radius=10, interactive=True)
|
339 |
+
with gr.Row():
|
340 |
+
seg_acc_stroke = gr.Button(value="Segment", interactive=True)
|
341 |
+
# stroke_reset_but = gr.Button(
|
342 |
+
# value="Reset",
|
343 |
+
# interactive=True
|
344 |
+
# )
|
345 |
+
|
346 |
+
tab_text = gr.Tab(label="Text")
|
347 |
+
with tab_text:
|
348 |
+
grounding_caption = gr.Textbox(label="Detection Prompt")
|
349 |
+
detect_button = gr.Button(value="Detect")
|
350 |
+
with gr.Accordion("Advanced options", open=False):
|
351 |
+
with gr.Row():
|
352 |
+
with gr.Column(scale=0.5):
|
353 |
+
box_threshold = gr.Slider(
|
354 |
+
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
355 |
+
)
|
356 |
+
with gr.Column(scale=0.5):
|
357 |
+
text_threshold = gr.Slider(
|
358 |
+
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
359 |
+
)
|
360 |
+
|
361 |
+
with gr.Row():
|
362 |
+
with gr.Column(scale=0.5):
|
363 |
+
with gr.Tab(label="SegTracker Args"):
|
364 |
+
# args for tracking in video do segment-everthing
|
365 |
+
points_per_side = gr.Slider(
|
366 |
+
label = "points_per_side",
|
367 |
+
minimum= 1,
|
368 |
+
step = 1,
|
369 |
+
maximum=100,
|
370 |
+
value=16,
|
371 |
+
interactive=True
|
372 |
+
)
|
373 |
+
|
374 |
+
sam_gap = gr.Slider(
|
375 |
+
label='sam_gap',
|
376 |
+
minimum = 1,
|
377 |
+
step=1,
|
378 |
+
maximum = 9999,
|
379 |
+
value=100,
|
380 |
+
interactive=True,
|
381 |
+
)
|
382 |
+
|
383 |
+
max_obj_num = gr.Slider(
|
384 |
+
label='max_obj_num',
|
385 |
+
minimum = 50,
|
386 |
+
step=1,
|
387 |
+
maximum = 300,
|
388 |
+
value=255,
|
389 |
+
interactive=True
|
390 |
+
)
|
391 |
+
with gr.Accordion("aot advanced options", open=False):
|
392 |
+
aot_model = gr.Dropdown(
|
393 |
+
label="aot_model",
|
394 |
+
choices = [
|
395 |
+
"deaotb",
|
396 |
+
"deaotl",
|
397 |
+
"r50_deaotl"
|
398 |
+
],
|
399 |
+
value = "r50_deaotl",
|
400 |
+
interactive=True,
|
401 |
+
)
|
402 |
+
long_term_mem = gr.Slider(label="long term memory gap", minimum=1, maximum=9999, value=9999, step=1)
|
403 |
+
max_len_long_term = gr.Slider(label="max len of long term memory", minimum=1, maximum=9999, value=9999, step=1)
|
404 |
+
|
405 |
+
with gr.Column():
|
406 |
+
new_object_button = gr.Button(
|
407 |
+
value="Add new object",
|
408 |
+
interactive=True
|
409 |
+
)
|
410 |
+
reset_button = gr.Button(
|
411 |
+
value="Reset",
|
412 |
+
interactive=True,
|
413 |
+
)
|
414 |
+
track_for_video = gr.Button(
|
415 |
+
value="Start Tracking",
|
416 |
+
interactive=True,
|
417 |
+
)
|
418 |
+
|
419 |
+
with gr.Column(scale=0.5):
|
420 |
+
output_video = gr.Video(label='Output video').style(height=550)
|
421 |
+
output_mask = gr.File(label="Predicted masks")
|
422 |
+
|
423 |
+
##########################################################
|
424 |
+
###################### back-end #########################
|
425 |
+
##########################################################
|
426 |
+
|
427 |
+
# listen to the input_video to get the first frame of video
|
428 |
+
input_video.change(
|
429 |
+
fn=get_meta_from_video,
|
430 |
+
inputs=[
|
431 |
+
input_video
|
432 |
+
],
|
433 |
+
outputs=[
|
434 |
+
input_first_frame, origin_frame, drawing_board, grounding_caption
|
435 |
+
]
|
436 |
+
)
|
437 |
+
|
438 |
+
# listen to the input_img_seq to get the first frame of video
|
439 |
+
input_img_seq.change(
|
440 |
+
fn=get_meta_from_img_seq,
|
441 |
+
inputs=[
|
442 |
+
input_img_seq
|
443 |
+
],
|
444 |
+
outputs=[
|
445 |
+
input_first_frame, origin_frame, drawing_board, grounding_caption
|
446 |
+
]
|
447 |
+
)
|
448 |
+
|
449 |
+
#-------------- Input compont -------------
|
450 |
+
tab_video_input.select(
|
451 |
+
fn = clean,
|
452 |
+
inputs=[],
|
453 |
+
outputs=[
|
454 |
+
input_video,
|
455 |
+
input_img_seq,
|
456 |
+
Seg_Tracker,
|
457 |
+
input_first_frame,
|
458 |
+
origin_frame,
|
459 |
+
drawing_board,
|
460 |
+
click_stack,
|
461 |
+
]
|
462 |
+
)
|
463 |
+
|
464 |
+
tab_img_seq_input.select(
|
465 |
+
fn = clean,
|
466 |
+
inputs=[],
|
467 |
+
outputs=[
|
468 |
+
input_video,
|
469 |
+
input_img_seq,
|
470 |
+
Seg_Tracker,
|
471 |
+
input_first_frame,
|
472 |
+
origin_frame,
|
473 |
+
drawing_board,
|
474 |
+
click_stack,
|
475 |
+
]
|
476 |
+
)
|
477 |
+
|
478 |
+
extract_button.click(
|
479 |
+
fn=get_meta_from_img_seq,
|
480 |
+
inputs=[
|
481 |
+
input_img_seq
|
482 |
+
],
|
483 |
+
outputs=[
|
484 |
+
input_first_frame, origin_frame, drawing_board
|
485 |
+
]
|
486 |
+
)
|
487 |
+
|
488 |
+
|
489 |
+
# ------------------- Interactive component -----------------
|
490 |
+
|
491 |
+
# listen to the tab to init SegTracker
|
492 |
+
tab_everything.select(
|
493 |
+
fn=init_SegTracker,
|
494 |
+
inputs=[
|
495 |
+
aot_model,
|
496 |
+
long_term_mem,
|
497 |
+
max_len_long_term,
|
498 |
+
sam_gap,
|
499 |
+
max_obj_num,
|
500 |
+
points_per_side,
|
501 |
+
origin_frame
|
502 |
+
],
|
503 |
+
outputs=[
|
504 |
+
Seg_Tracker, input_first_frame, click_stack, grounding_caption
|
505 |
+
],
|
506 |
+
queue=False,
|
507 |
+
|
508 |
+
)
|
509 |
+
|
510 |
+
tab_click.select(
|
511 |
+
fn=init_SegTracker,
|
512 |
+
inputs=[
|
513 |
+
aot_model,
|
514 |
+
long_term_mem,
|
515 |
+
max_len_long_term,
|
516 |
+
sam_gap,
|
517 |
+
max_obj_num,
|
518 |
+
points_per_side,
|
519 |
+
origin_frame
|
520 |
+
],
|
521 |
+
outputs=[
|
522 |
+
Seg_Tracker, input_first_frame, click_stack, grounding_caption
|
523 |
+
],
|
524 |
+
queue=False,
|
525 |
+
)
|
526 |
+
|
527 |
+
tab_stroke.select(
|
528 |
+
fn=init_SegTracker_Stroke,
|
529 |
+
inputs=[
|
530 |
+
aot_model,
|
531 |
+
long_term_mem,
|
532 |
+
max_len_long_term,
|
533 |
+
sam_gap,
|
534 |
+
max_obj_num,
|
535 |
+
points_per_side,
|
536 |
+
origin_frame,
|
537 |
+
],
|
538 |
+
outputs=[
|
539 |
+
Seg_Tracker, input_first_frame, click_stack, drawing_board
|
540 |
+
],
|
541 |
+
queue=False,
|
542 |
+
)
|
543 |
+
|
544 |
+
tab_text.select(
|
545 |
+
fn=init_SegTracker,
|
546 |
+
inputs=[
|
547 |
+
aot_model,
|
548 |
+
long_term_mem,
|
549 |
+
max_len_long_term,
|
550 |
+
sam_gap,
|
551 |
+
max_obj_num,
|
552 |
+
points_per_side,
|
553 |
+
origin_frame
|
554 |
+
],
|
555 |
+
outputs=[
|
556 |
+
Seg_Tracker, input_first_frame, click_stack, grounding_caption
|
557 |
+
],
|
558 |
+
queue=False,
|
559 |
+
)
|
560 |
+
|
561 |
+
# Use SAM to segment everything for the first frame of video
|
562 |
+
seg_every_first_frame.click(
|
563 |
+
fn=segment_everything,
|
564 |
+
inputs=[
|
565 |
+
Seg_Tracker,
|
566 |
+
aot_model,
|
567 |
+
long_term_mem,
|
568 |
+
max_len_long_term,
|
569 |
+
origin_frame,
|
570 |
+
sam_gap,
|
571 |
+
max_obj_num,
|
572 |
+
points_per_side,
|
573 |
+
|
574 |
+
],
|
575 |
+
outputs=[
|
576 |
+
Seg_Tracker,
|
577 |
+
input_first_frame,
|
578 |
+
],
|
579 |
+
)
|
580 |
+
|
581 |
+
# Interactively modify the mask acc click
|
582 |
+
input_first_frame.select(
|
583 |
+
fn=sam_click,
|
584 |
+
inputs=[
|
585 |
+
Seg_Tracker, origin_frame, point_mode, click_stack,
|
586 |
+
aot_model,
|
587 |
+
long_term_mem,
|
588 |
+
max_len_long_term,
|
589 |
+
sam_gap,
|
590 |
+
max_obj_num,
|
591 |
+
points_per_side,
|
592 |
+
],
|
593 |
+
outputs=[
|
594 |
+
Seg_Tracker, input_first_frame, click_stack
|
595 |
+
]
|
596 |
+
)
|
597 |
+
|
598 |
+
# Interactively segment acc stroke
|
599 |
+
seg_acc_stroke.click(
|
600 |
+
fn=sam_stroke,
|
601 |
+
inputs=[
|
602 |
+
Seg_Tracker, origin_frame, drawing_board,
|
603 |
+
aot_model,
|
604 |
+
long_term_mem,
|
605 |
+
max_len_long_term,
|
606 |
+
sam_gap,
|
607 |
+
max_obj_num,
|
608 |
+
points_per_side,
|
609 |
+
],
|
610 |
+
outputs=[
|
611 |
+
Seg_Tracker, input_first_frame, drawing_board
|
612 |
+
]
|
613 |
+
)
|
614 |
+
|
615 |
+
# Use grounding-dino to detect object
|
616 |
+
detect_button.click(
|
617 |
+
fn=gd_detect,
|
618 |
+
inputs=[
|
619 |
+
Seg_Tracker, origin_frame, grounding_caption, box_threshold, text_threshold,
|
620 |
+
aot_model, long_term_mem, max_len_long_term, sam_gap, max_obj_num, points_per_side
|
621 |
+
],
|
622 |
+
outputs=[
|
623 |
+
Seg_Tracker, input_first_frame
|
624 |
+
]
|
625 |
+
)
|
626 |
+
|
627 |
+
# Add new object
|
628 |
+
new_object_button.click(
|
629 |
+
fn=add_new_object,
|
630 |
+
inputs=
|
631 |
+
[
|
632 |
+
Seg_Tracker
|
633 |
+
],
|
634 |
+
outputs=
|
635 |
+
[
|
636 |
+
Seg_Tracker, click_stack
|
637 |
+
]
|
638 |
+
)
|
639 |
+
|
640 |
+
# Track object in video
|
641 |
+
track_for_video.click(
|
642 |
+
fn=tracking_objects,
|
643 |
+
inputs=[
|
644 |
+
Seg_Tracker,
|
645 |
+
input_video,
|
646 |
+
input_img_seq,
|
647 |
+
fps,
|
648 |
+
],
|
649 |
+
outputs=[
|
650 |
+
output_video, output_mask
|
651 |
+
]
|
652 |
+
)
|
653 |
+
|
654 |
+
# ----------------- Reset and Undo ---------------------------
|
655 |
+
|
656 |
+
# Rest
|
657 |
+
reset_button.click(
|
658 |
+
fn=init_SegTracker,
|
659 |
+
inputs=[
|
660 |
+
aot_model,
|
661 |
+
long_term_mem,
|
662 |
+
max_len_long_term,
|
663 |
+
sam_gap,
|
664 |
+
max_obj_num,
|
665 |
+
points_per_side,
|
666 |
+
origin_frame
|
667 |
+
],
|
668 |
+
outputs=[
|
669 |
+
Seg_Tracker, input_first_frame, click_stack, grounding_caption
|
670 |
+
],
|
671 |
+
queue=False,
|
672 |
+
show_progress=False
|
673 |
+
)
|
674 |
+
|
675 |
+
# every_reset_but.click(
|
676 |
+
# fn=init_SegTracker,
|
677 |
+
# inputs=[
|
678 |
+
# aot_model,
|
679 |
+
# sam_gap,
|
680 |
+
# max_obj_num,
|
681 |
+
# points_per_side,
|
682 |
+
# origin_frame
|
683 |
+
# ],
|
684 |
+
# outputs=[
|
685 |
+
# Seg_Tracker, input_first_frame, click_stack, grounding_caption
|
686 |
+
# ],
|
687 |
+
# queue=False,
|
688 |
+
# show_progress=False
|
689 |
+
# )
|
690 |
+
|
691 |
+
# click_reset_but.click(
|
692 |
+
# fn=init_SegTracker,
|
693 |
+
# inputs=[
|
694 |
+
# aot_model,
|
695 |
+
# sam_gap,
|
696 |
+
# max_obj_num,
|
697 |
+
# points_per_side,
|
698 |
+
# origin_frame
|
699 |
+
# ],
|
700 |
+
# outputs=[
|
701 |
+
# Seg_Tracker, input_first_frame, click_stack, grounding_caption
|
702 |
+
# ],
|
703 |
+
# queue=False,
|
704 |
+
# show_progress=False
|
705 |
+
# )
|
706 |
+
|
707 |
+
# stroke_reset_but.click(
|
708 |
+
# fn=init_SegTracker_Stroke,
|
709 |
+
# inputs=[
|
710 |
+
# aot_model,
|
711 |
+
# sam_gap,
|
712 |
+
# max_obj_num,
|
713 |
+
# points_per_side,
|
714 |
+
# origin_frame,
|
715 |
+
# ],
|
716 |
+
# outputs=[
|
717 |
+
# Seg_Tracker, input_first_frame, click_stack, drawing_board
|
718 |
+
# ],
|
719 |
+
# queue=False,
|
720 |
+
# show_progress=False
|
721 |
+
# )
|
722 |
+
|
723 |
+
# Undo click
|
724 |
+
click_undo_but.click(
|
725 |
+
fn = undo_click_stack_and_refine_seg,
|
726 |
+
inputs=[
|
727 |
+
Seg_Tracker, origin_frame, click_stack,
|
728 |
+
aot_model,
|
729 |
+
long_term_mem,
|
730 |
+
max_len_long_term,
|
731 |
+
sam_gap,
|
732 |
+
max_obj_num,
|
733 |
+
points_per_side,
|
734 |
+
],
|
735 |
+
outputs=[
|
736 |
+
Seg_Tracker, input_first_frame, click_stack
|
737 |
+
]
|
738 |
+
)
|
739 |
+
|
740 |
+
every_undo_but.click(
|
741 |
+
fn = undo_click_stack_and_refine_seg,
|
742 |
+
inputs=[
|
743 |
+
Seg_Tracker, origin_frame, click_stack,
|
744 |
+
aot_model,
|
745 |
+
long_term_mem,
|
746 |
+
max_len_long_term,
|
747 |
+
sam_gap,
|
748 |
+
max_obj_num,
|
749 |
+
points_per_side,
|
750 |
+
],
|
751 |
+
outputs=[
|
752 |
+
Seg_Tracker, input_first_frame, click_stack
|
753 |
+
]
|
754 |
+
)
|
755 |
+
|
756 |
+
with gr.Tab(label='Video example'):
|
757 |
+
gr.Examples(
|
758 |
+
examples=[
|
759 |
+
# os.path.join(os.path.dirname(__file__), "assets", "840_iSXIa0hE8Ek.mp4"),
|
760 |
+
os.path.join(os.path.dirname(__file__), "assets", "blackswan.mp4"),
|
761 |
+
# os.path.join(os.path.dirname(__file__), "assets", "bear.mp4"),
|
762 |
+
# os.path.join(os.path.dirname(__file__), "assets", "camel.mp4"),
|
763 |
+
# os.path.join(os.path.dirname(__file__), "assets", "skate-park.mp4"),
|
764 |
+
# os.path.join(os.path.dirname(__file__), "assets", "swing.mp4"),
|
765 |
+
],
|
766 |
+
inputs=[input_video],
|
767 |
+
)
|
768 |
+
|
769 |
+
with gr.Tab(label='Image-seq expamle'):
|
770 |
+
gr.Examples(
|
771 |
+
examples=[
|
772 |
+
os.path.join(os.path.dirname(__file__), "assets", "840_iSXIa0hE8Ek.zip"),
|
773 |
+
],
|
774 |
+
inputs=[input_img_seq],
|
775 |
+
)
|
776 |
+
|
777 |
+
app.queue(concurrency_count=1)
|
778 |
+
app.launch(debug=True, enable_queue=True, share=True)
|
779 |
+
|
780 |
+
|
781 |
+
if __name__ == "__main__":
|
782 |
+
seg_track_app()
|
img2vid.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import os
|
3 |
+
|
4 |
+
# set the directory containing the images
|
5 |
+
img_dir = './assets/840_iSXIa0hE8Ek'
|
6 |
+
|
7 |
+
# set the output video file name and codec
|
8 |
+
out_file = './assets/840_iSXIa0hE8Ek.mp4'
|
9 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
10 |
+
|
11 |
+
# get the dimensions of the first image
|
12 |
+
img_path = os.path.join(img_dir, os.listdir(img_dir)[0])
|
13 |
+
img = cv2.imread(img_path)
|
14 |
+
height, width, channels = img.shape
|
15 |
+
|
16 |
+
# create the VideoWriter object
|
17 |
+
out = cv2.VideoWriter(out_file, fourcc, 10, (width, height))
|
18 |
+
|
19 |
+
# loop through the images and write them to the video
|
20 |
+
for img_name in sorted(os.listdir(img_dir)):
|
21 |
+
img_path = os.path.join(img_dir, img_name)
|
22 |
+
img = cv2.imread(img_path)
|
23 |
+
out.write(img)
|
24 |
+
|
25 |
+
# release the VideoWriter object and close the video file
|
26 |
+
out.release()
|
model_args.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Explanation of generator_args is in sam/segment_anything/automatic_mask_generator.py: SamAutomaticMaskGenerator
|
2 |
+
sam_args = {
|
3 |
+
'sam_checkpoint': "ckpt/sam_vit_b_01ec64.pth",
|
4 |
+
'model_type': "vit_b",
|
5 |
+
'generator_args':{
|
6 |
+
'points_per_side': 16,
|
7 |
+
'pred_iou_thresh': 0.8,
|
8 |
+
'stability_score_thresh': 0.9,
|
9 |
+
'crop_n_layers': 1,
|
10 |
+
'crop_n_points_downscale_factor': 2,
|
11 |
+
'min_mask_region_area': 200,
|
12 |
+
},
|
13 |
+
'gpu_id': 0,
|
14 |
+
}
|
15 |
+
aot_args = {
|
16 |
+
'phase': 'PRE_YTB_DAV',
|
17 |
+
'model': 'r50_deaotl',
|
18 |
+
'model_path': 'ckpt/R50_DeAOTL_PRE_YTB_DAV.pth',
|
19 |
+
'long_term_mem_gap': 9999,
|
20 |
+
'max_len_long_term': 9999,
|
21 |
+
'gpu_id': 0,
|
22 |
+
}
|
23 |
+
segtracker_args = {
|
24 |
+
'sam_gap': 10, # the interval to run sam to segment new objects
|
25 |
+
'min_area': 200, # minimal mask area to add a new mask as a new object
|
26 |
+
'max_obj_num': 255, # maximal object number to track in a video
|
27 |
+
'min_new_obj_iou': 0.8, # the background area ratio of a new object should > 80%
|
28 |
+
}
|
seg_track_anything.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
from model_args import segtracker_args,sam_args,aot_args
|
4 |
+
from PIL import Image
|
5 |
+
from aot_tracker import _palette
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import gc
|
9 |
+
import imageio
|
10 |
+
from scipy.ndimage import binary_dilation
|
11 |
+
|
12 |
+
def save_prediction(pred_mask,output_dir,file_name):
|
13 |
+
save_mask = Image.fromarray(pred_mask.astype(np.uint8))
|
14 |
+
save_mask = save_mask.convert(mode='P')
|
15 |
+
save_mask.putpalette(_palette)
|
16 |
+
save_mask.save(os.path.join(output_dir,file_name))
|
17 |
+
|
18 |
+
def colorize_mask(pred_mask):
|
19 |
+
save_mask = Image.fromarray(pred_mask.astype(np.uint8))
|
20 |
+
save_mask = save_mask.convert(mode='P')
|
21 |
+
save_mask.putpalette(_palette)
|
22 |
+
save_mask = save_mask.convert(mode='RGB')
|
23 |
+
return np.array(save_mask)
|
24 |
+
|
25 |
+
def draw_mask(img, mask, alpha=0.5, id_countour=False):
|
26 |
+
img_mask = np.zeros_like(img)
|
27 |
+
img_mask = img
|
28 |
+
if id_countour:
|
29 |
+
# very slow ~ 1s per image
|
30 |
+
obj_ids = np.unique(mask)
|
31 |
+
obj_ids = obj_ids[obj_ids!=0]
|
32 |
+
|
33 |
+
for id in obj_ids:
|
34 |
+
# Overlay color on binary mask
|
35 |
+
if id <= 255:
|
36 |
+
color = _palette[id*3:id*3+3]
|
37 |
+
else:
|
38 |
+
color = [0,0,0]
|
39 |
+
foreground = img * (1-alpha) + np.ones_like(img) * alpha * np.array(color)
|
40 |
+
binary_mask = (mask == id)
|
41 |
+
|
42 |
+
# Compose image
|
43 |
+
img_mask[binary_mask] = foreground[binary_mask]
|
44 |
+
|
45 |
+
countours = binary_dilation(binary_mask,iterations=1) ^ binary_mask
|
46 |
+
img_mask[countours, :] = 0
|
47 |
+
else:
|
48 |
+
binary_mask = (mask!=0)
|
49 |
+
countours = binary_dilation(binary_mask,iterations=1) ^ binary_mask
|
50 |
+
foreground = img*(1-alpha)+colorize_mask(mask)*alpha
|
51 |
+
img_mask[binary_mask] = foreground[binary_mask]
|
52 |
+
img_mask[countours,:] = 0
|
53 |
+
|
54 |
+
return img_mask.astype(img.dtype)
|
55 |
+
|
56 |
+
def create_dir(dir_path):
|
57 |
+
if os.path.isdir(dir_path):
|
58 |
+
os.system(f"rm -r {dir_path}")
|
59 |
+
|
60 |
+
os.makedirs(dir_path)
|
61 |
+
|
62 |
+
aot_model2ckpt = {
|
63 |
+
"deaotb": "./ckpt/DeAOTB_PRE_YTB_DAV.pth",
|
64 |
+
"deaotl": "./ckpt/DeAOTL_PRE_YTB_DAV",
|
65 |
+
"r50_deaotl": "./ckpt/R50_DeAOTL_PRE_YTB_DAV.pth",
|
66 |
+
}
|
67 |
+
|
68 |
+
|
69 |
+
def tracking_objects_in_video(SegTracker, input_video, input_img_seq, fps):
|
70 |
+
|
71 |
+
if input_video is not None:
|
72 |
+
video_name = os.path.basename(input_video).split('.')[0]
|
73 |
+
elif input_img_seq is not None:
|
74 |
+
file_name = input_img_seq.name.split('/')[-1].split('.')[0]
|
75 |
+
file_path = f'./assets/{file_name}'
|
76 |
+
imgs_path = sorted([os.path.join(file_path, img_name) for img_name in os.listdir(file_path)])
|
77 |
+
video_name = file_name
|
78 |
+
else:
|
79 |
+
return None, None
|
80 |
+
|
81 |
+
# create dir to save result
|
82 |
+
tracking_result_dir = f'{os.path.join(os.path.dirname(__file__), "tracking_results", f"{video_name}")}'
|
83 |
+
create_dir(tracking_result_dir)
|
84 |
+
|
85 |
+
io_args = {
|
86 |
+
'tracking_result_dir': tracking_result_dir,
|
87 |
+
'output_mask_dir': f'{tracking_result_dir}/{video_name}_masks',
|
88 |
+
'output_masked_frame_dir': f'{tracking_result_dir}/{video_name}_masked_frames',
|
89 |
+
'output_video': f'{tracking_result_dir}/{video_name}_seg.mp4', # keep same format as input video
|
90 |
+
'output_gif': f'{tracking_result_dir}/{video_name}_seg.gif',
|
91 |
+
}
|
92 |
+
|
93 |
+
if input_video is not None:
|
94 |
+
return video_type_input_tracking(SegTracker, input_video, io_args, video_name)
|
95 |
+
elif input_img_seq is not None:
|
96 |
+
return img_seq_type_input_tracking(SegTracker, io_args, video_name, imgs_path, fps)
|
97 |
+
|
98 |
+
|
99 |
+
def video_type_input_tracking(SegTracker, input_video, io_args, video_name):
|
100 |
+
|
101 |
+
# source video to segment
|
102 |
+
cap = cv2.VideoCapture(input_video)
|
103 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
104 |
+
|
105 |
+
# create dir to save predicted mask and masked frame
|
106 |
+
output_mask_dir = io_args['output_mask_dir']
|
107 |
+
create_dir(io_args['output_mask_dir'])
|
108 |
+
create_dir(io_args['output_masked_frame_dir'])
|
109 |
+
|
110 |
+
pred_list = []
|
111 |
+
masked_pred_list = []
|
112 |
+
|
113 |
+
torch.cuda.empty_cache()
|
114 |
+
gc.collect()
|
115 |
+
sam_gap = SegTracker.sam_gap
|
116 |
+
frame_idx = 0
|
117 |
+
|
118 |
+
with torch.cuda.amp.autocast():
|
119 |
+
while cap.isOpened():
|
120 |
+
ret, frame = cap.read()
|
121 |
+
if not ret:
|
122 |
+
break
|
123 |
+
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
|
124 |
+
|
125 |
+
if frame_idx == 0:
|
126 |
+
pred_mask = SegTracker.first_frame_mask
|
127 |
+
torch.cuda.empty_cache()
|
128 |
+
gc.collect()
|
129 |
+
elif (frame_idx % sam_gap) == 0:
|
130 |
+
seg_mask = SegTracker.seg(frame)
|
131 |
+
torch.cuda.empty_cache()
|
132 |
+
gc.collect()
|
133 |
+
track_mask = SegTracker.track(frame)
|
134 |
+
# find new objects, and update tracker with new objects
|
135 |
+
new_obj_mask = SegTracker.find_new_objs(track_mask,seg_mask)
|
136 |
+
save_prediction(new_obj_mask, output_mask_dir, str(frame_idx).zfill(5) + '_new.png')
|
137 |
+
pred_mask = track_mask + new_obj_mask
|
138 |
+
# segtracker.restart_tracker()
|
139 |
+
SegTracker.add_reference(frame, pred_mask)
|
140 |
+
else:
|
141 |
+
pred_mask = SegTracker.track(frame,update_memory=True)
|
142 |
+
torch.cuda.empty_cache()
|
143 |
+
gc.collect()
|
144 |
+
|
145 |
+
save_prediction(pred_mask, output_mask_dir, str(frame_idx).zfill(5) + '.png')
|
146 |
+
pred_list.append(pred_mask)
|
147 |
+
|
148 |
+
print("processed frame {}, obj_num {}".format(frame_idx, SegTracker.get_obj_num()),end='\r')
|
149 |
+
frame_idx += 1
|
150 |
+
cap.release()
|
151 |
+
print('\nfinished')
|
152 |
+
|
153 |
+
##################
|
154 |
+
# Visualization
|
155 |
+
##################
|
156 |
+
|
157 |
+
# draw pred mask on frame and save as a video
|
158 |
+
cap = cv2.VideoCapture(input_video)
|
159 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
160 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
161 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
162 |
+
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
163 |
+
|
164 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
165 |
+
# if input_video[-3:]=='mp4':
|
166 |
+
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
167 |
+
# elif input_video[-3:] == 'avi':
|
168 |
+
# fourcc = cv2.VideoWriter_fourcc(*"MJPG")
|
169 |
+
# # fourcc = cv2.VideoWriter_fourcc(*"XVID")
|
170 |
+
# else:
|
171 |
+
# fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))
|
172 |
+
out = cv2.VideoWriter(io_args['output_video'], fourcc, fps, (width, height))
|
173 |
+
|
174 |
+
frame_idx = 0
|
175 |
+
while cap.isOpened():
|
176 |
+
ret, frame = cap.read()
|
177 |
+
if not ret:
|
178 |
+
break
|
179 |
+
|
180 |
+
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
|
181 |
+
pred_mask = pred_list[frame_idx]
|
182 |
+
masked_frame = draw_mask(frame, pred_mask)
|
183 |
+
cv2.imwrite(f"{io_args['output_masked_frame_dir']}/{str(frame_idx).zfill(5)}.png", masked_frame[:, :, ::-1])
|
184 |
+
|
185 |
+
masked_pred_list.append(masked_frame)
|
186 |
+
masked_frame = cv2.cvtColor(masked_frame,cv2.COLOR_RGB2BGR)
|
187 |
+
out.write(masked_frame)
|
188 |
+
print('frame {} writed'.format(frame_idx),end='\r')
|
189 |
+
frame_idx += 1
|
190 |
+
out.release()
|
191 |
+
cap.release()
|
192 |
+
print("\n{} saved".format(io_args['output_video']))
|
193 |
+
print('\nfinished')
|
194 |
+
|
195 |
+
# save colorized masks as a gif
|
196 |
+
imageio.mimsave(io_args['output_gif'], masked_pred_list, fps=fps)
|
197 |
+
print("{} saved".format(io_args['output_gif']))
|
198 |
+
|
199 |
+
# zip predicted mask
|
200 |
+
os.system(f"zip -r {io_args['tracking_result_dir']}/{video_name}_pred_mask.zip {io_args['output_mask_dir']}")
|
201 |
+
|
202 |
+
# manually release memory (after cuda out of memory)
|
203 |
+
del SegTracker
|
204 |
+
torch.cuda.empty_cache()
|
205 |
+
gc.collect()
|
206 |
+
|
207 |
+
return io_args['output_video'], f"{io_args['tracking_result_dir']}/{video_name}_pred_mask.zip"
|
208 |
+
|
209 |
+
|
210 |
+
def img_seq_type_input_tracking(SegTracker, io_args, video_name, imgs_path, fps):
|
211 |
+
|
212 |
+
# create dir to save predicted mask and masked frame
|
213 |
+
output_mask_dir = io_args['output_mask_dir']
|
214 |
+
create_dir(io_args['output_mask_dir'])
|
215 |
+
create_dir(io_args['output_masked_frame_dir'])
|
216 |
+
|
217 |
+
pred_list = []
|
218 |
+
masked_pred_list = []
|
219 |
+
|
220 |
+
torch.cuda.empty_cache()
|
221 |
+
gc.collect()
|
222 |
+
sam_gap = SegTracker.sam_gap
|
223 |
+
frame_idx = 0
|
224 |
+
|
225 |
+
with torch.cuda.amp.autocast():
|
226 |
+
for img_path in imgs_path:
|
227 |
+
frame_name = os.path.basename(img_path).split('.')[0]
|
228 |
+
frame = cv2.imread(img_path)
|
229 |
+
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
|
230 |
+
|
231 |
+
if frame_idx == 0:
|
232 |
+
pred_mask = SegTracker.first_frame_mask
|
233 |
+
torch.cuda.empty_cache()
|
234 |
+
gc.collect()
|
235 |
+
elif (frame_idx % sam_gap) == 0:
|
236 |
+
seg_mask = SegTracker.seg(frame)
|
237 |
+
torch.cuda.empty_cache()
|
238 |
+
gc.collect()
|
239 |
+
track_mask = SegTracker.track(frame)
|
240 |
+
# find new objects, and update tracker with new objects
|
241 |
+
new_obj_mask = SegTracker.find_new_objs(track_mask,seg_mask)
|
242 |
+
save_prediction(new_obj_mask, output_mask_dir, f'{frame_name}_new.png')
|
243 |
+
pred_mask = track_mask + new_obj_mask
|
244 |
+
# segtracker.restart_tracker()
|
245 |
+
SegTracker.add_reference(frame, pred_mask)
|
246 |
+
else:
|
247 |
+
pred_mask = SegTracker.track(frame,update_memory=True)
|
248 |
+
torch.cuda.empty_cache()
|
249 |
+
gc.collect()
|
250 |
+
|
251 |
+
save_prediction(pred_mask, output_mask_dir, f'{frame_name}.png')
|
252 |
+
pred_list.append(pred_mask)
|
253 |
+
|
254 |
+
print("processed frame {}, obj_num {}".format(frame_idx, SegTracker.get_obj_num()),end='\r')
|
255 |
+
frame_idx += 1
|
256 |
+
print('\nfinished')
|
257 |
+
|
258 |
+
##################
|
259 |
+
# Visualization
|
260 |
+
##################
|
261 |
+
|
262 |
+
# draw pred mask on frame and save as a video
|
263 |
+
height, width = pred_list[0].shape
|
264 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
265 |
+
|
266 |
+
out = cv2.VideoWriter(io_args['output_video'], fourcc, fps, (width, height))
|
267 |
+
|
268 |
+
frame_idx = 0
|
269 |
+
for img_path in imgs_path:
|
270 |
+
frame_name = os.path.basename(img_path).split('.')[0]
|
271 |
+
frame = cv2.imread(img_path)
|
272 |
+
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
|
273 |
+
|
274 |
+
pred_mask = pred_list[frame_idx]
|
275 |
+
masked_frame = draw_mask(frame, pred_mask)
|
276 |
+
masked_pred_list.append(masked_frame)
|
277 |
+
cv2.imwrite(f"{io_args['output_masked_frame_dir']}/{frame_name}.png", masked_frame[:, :, ::-1])
|
278 |
+
|
279 |
+
masked_frame = cv2.cvtColor(masked_frame,cv2.COLOR_RGB2BGR)
|
280 |
+
out.write(masked_frame)
|
281 |
+
print('frame {} writed'.format(frame_name),end='\r')
|
282 |
+
frame_idx += 1
|
283 |
+
out.release()
|
284 |
+
print("\n{} saved".format(io_args['output_video']))
|
285 |
+
print('\nfinished')
|
286 |
+
|
287 |
+
# save colorized masks as a gif
|
288 |
+
imageio.mimsave(io_args['output_gif'], masked_pred_list, fps=fps)
|
289 |
+
print("{} saved".format(io_args['output_gif']))
|
290 |
+
|
291 |
+
# zip predicted mask
|
292 |
+
os.system(f"zip -r {io_args['tracking_result_dir']}/{video_name}_pred_mask.zip {io_args['output_mask_dir']}")
|
293 |
+
|
294 |
+
# manually release memory (after cuda out of memory)
|
295 |
+
del SegTracker
|
296 |
+
torch.cuda.empty_cache()
|
297 |
+
gc.collect()
|
298 |
+
|
299 |
+
|
300 |
+
return io_args['output_video'], f"{io_args['tracking_result_dir']}/{video_name}_pred_mask.zip"
|