Spaces:
Build error
Build error
File size: 12,826 Bytes
04daa95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import importlib
import sys
import os
sys.path.append('.')
sys.path.append('..')
import cv2
from PIL import Image
from skimage.morphology.binary import binary_dilation
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from networks.models import build_vos_model
from networks.engines import build_engine
from utils.checkpoint import load_network
from dataloaders.eval_datasets import VOSTest
import dataloaders.video_transforms as tr
from utils.image import save_mask
_palette = [
255, 0, 0, 0, 0, 139, 255, 255, 84, 0, 255, 0, 139, 0, 139, 0, 128, 128,
128, 128, 128, 139, 0, 0, 218, 165, 32, 144, 238, 144, 160, 82, 45, 148, 0,
211, 255, 0, 255, 30, 144, 255, 255, 218, 185, 85, 107, 47, 255, 140, 0,
50, 205, 50, 123, 104, 238, 240, 230, 140, 72, 61, 139, 128, 128, 0, 0, 0,
205, 221, 160, 221, 143, 188, 143, 127, 255, 212, 176, 224, 230, 244, 164,
96, 250, 128, 114, 70, 130, 180, 0, 128, 0, 173, 255, 47, 255, 105, 180,
238, 130, 238, 154, 205, 50, 220, 20, 60, 176, 48, 96, 0, 206, 209, 0, 191,
255, 40, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45,
45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 51, 51, 51,
52, 52, 52, 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 58,
58, 58, 59, 59, 59, 60, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 63, 64, 64,
64, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70,
71, 71, 71, 72, 72, 72, 73, 73, 73, 74, 74, 74, 75, 75, 75, 76, 76, 76, 77,
77, 77, 78, 78, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83,
83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89,
90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 95, 95, 95, 96,
96, 96, 97, 97, 97, 98, 98, 98, 99, 99, 99, 100, 100, 100, 101, 101, 101,
102, 102, 102, 103, 103, 103, 104, 104, 104, 105, 105, 105, 106, 106, 106,
107, 107, 107, 108, 108, 108, 109, 109, 109, 110, 110, 110, 111, 111, 111,
112, 112, 112, 113, 113, 113, 114, 114, 114, 115, 115, 115, 116, 116, 116,
117, 117, 117, 118, 118, 118, 119, 119, 119, 120, 120, 120, 121, 121, 121,
122, 122, 122, 123, 123, 123, 124, 124, 124, 125, 125, 125, 126, 126, 126,
127, 127, 127, 128, 128, 128, 129, 129, 129, 130, 130, 130, 131, 131, 131,
132, 132, 132, 133, 133, 133, 134, 134, 134, 135, 135, 135, 136, 136, 136,
137, 137, 137, 138, 138, 138, 139, 139, 139, 140, 140, 140, 141, 141, 141,
142, 142, 142, 143, 143, 143, 144, 144, 144, 145, 145, 145, 146, 146, 146,
147, 147, 147, 148, 148, 148, 149, 149, 149, 150, 150, 150, 151, 151, 151,
152, 152, 152, 153, 153, 153, 154, 154, 154, 155, 155, 155, 156, 156, 156,
157, 157, 157, 158, 158, 158, 159, 159, 159, 160, 160, 160, 161, 161, 161,
162, 162, 162, 163, 163, 163, 164, 164, 164, 165, 165, 165, 166, 166, 166,
167, 167, 167, 168, 168, 168, 169, 169, 169, 170, 170, 170, 171, 171, 171,
172, 172, 172, 173, 173, 173, 174, 174, 174, 175, 175, 175, 176, 176, 176,
177, 177, 177, 178, 178, 178, 179, 179, 179, 180, 180, 180, 181, 181, 181,
182, 182, 182, 183, 183, 183, 184, 184, 184, 185, 185, 185, 186, 186, 186,
187, 187, 187, 188, 188, 188, 189, 189, 189, 190, 190, 190, 191, 191, 191,
192, 192, 192, 193, 193, 193, 194, 194, 194, 195, 195, 195, 196, 196, 196,
197, 197, 197, 198, 198, 198, 199, 199, 199, 200, 200, 200, 201, 201, 201,
202, 202, 202, 203, 203, 203, 204, 204, 204, 205, 205, 205, 206, 206, 206,
207, 207, 207, 208, 208, 208, 209, 209, 209, 210, 210, 210, 211, 211, 211,
212, 212, 212, 213, 213, 213, 214, 214, 214, 215, 215, 215, 216, 216, 216,
217, 217, 217, 218, 218, 218, 219, 219, 219, 220, 220, 220, 221, 221, 221,
222, 222, 222, 223, 223, 223, 224, 224, 224, 225, 225, 225, 226, 226, 226,
227, 227, 227, 228, 228, 228, 229, 229, 229, 230, 230, 230, 231, 231, 231,
232, 232, 232, 233, 233, 233, 234, 234, 234, 235, 235, 235, 236, 236, 236,
237, 237, 237, 238, 238, 238, 239, 239, 239, 240, 240, 240, 241, 241, 241,
242, 242, 242, 243, 243, 243, 244, 244, 244, 245, 245, 245, 246, 246, 246,
247, 247, 247, 248, 248, 248, 249, 249, 249, 250, 250, 250, 251, 251, 251,
252, 252, 252, 253, 253, 253, 254, 254, 254, 255, 255, 255, 0, 0, 0
]
color_palette = np.array(_palette).reshape(-1, 3)
def overlay(image, mask, colors=[255, 0, 0], cscale=1, alpha=0.4):
colors = np.atleast_2d(colors) * cscale
im_overlay = image.copy()
object_ids = np.unique(mask)
for object_id in object_ids[1:]:
# Overlay color on binary mask
foreground = image * alpha + np.ones(
image.shape) * (1 - alpha) * np.array(colors[object_id])
binary_mask = mask == object_id
# Compose image
im_overlay[binary_mask] = foreground[binary_mask]
countours = binary_dilation(binary_mask) ^ binary_mask
im_overlay[countours, :] = 0
return im_overlay.astype(image.dtype)
def demo(cfg):
video_fps = 15
gpu_id = cfg.TEST_GPU_ID
# Load pre-trained model
print('Build AOT model.')
model = build_vos_model(cfg.MODEL_VOS, cfg).cuda(gpu_id)
print('Load checkpoint from {}'.format(cfg.TEST_CKPT_PATH))
model, _ = load_network(model, cfg.TEST_CKPT_PATH, gpu_id)
print('Build AOT engine.')
engine = build_engine(cfg.MODEL_ENGINE,
phase='eval',
aot_model=model,
gpu_id=gpu_id,
long_term_mem_gap=cfg.TEST_LONG_TERM_MEM_GAP)
# Prepare datasets for each sequence
transform = transforms.Compose([
tr.MultiRestrictSize(cfg.TEST_MIN_SIZE, cfg.TEST_MAX_SIZE,
cfg.TEST_FLIP, cfg.TEST_MULTISCALE,
cfg.MODEL_ALIGN_CORNERS),
tr.MultiToTensor()
])
image_root = os.path.join(cfg.TEST_DATA_PATH, 'images')
label_root = os.path.join(cfg.TEST_DATA_PATH, 'masks')
sequences = os.listdir(image_root)
seq_datasets = []
for seq_name in sequences:
print('Build a dataset for sequence {}.'.format(seq_name))
seq_images = np.sort(os.listdir(os.path.join(image_root, seq_name)))
seq_labels = [seq_images[0].replace('jpg', 'png')]
seq_dataset = VOSTest(image_root,
label_root,
seq_name,
seq_images,
seq_labels,
transform=transform)
seq_datasets.append(seq_dataset)
# Infer
output_root = cfg.TEST_OUTPUT_PATH
output_mask_root = os.path.join(output_root, 'pred_masks')
if not os.path.exists(output_mask_root):
os.makedirs(output_mask_root)
for seq_dataset in seq_datasets:
seq_name = seq_dataset.seq_name
image_seq_root = os.path.join(image_root, seq_name)
output_mask_seq_root = os.path.join(output_mask_root, seq_name)
if not os.path.exists(output_mask_seq_root):
os.makedirs(output_mask_seq_root)
print('Build a dataloader for sequence {}.'.format(seq_name))
seq_dataloader = DataLoader(seq_dataset,
batch_size=1,
shuffle=False,
num_workers=cfg.TEST_WORKERS,
pin_memory=True)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
output_video_path = os.path.join(
output_root, '{}_{}fps.avi'.format(seq_name, video_fps))
print('Start the inference of sequence {}:'.format(seq_name))
model.eval()
engine.restart_engine()
with torch.no_grad():
for frame_idx, samples in enumerate(seq_dataloader):
sample = samples[0]
img_name = sample['meta']['current_name'][0]
obj_nums = sample['meta']['obj_num']
output_height = sample['meta']['height']
output_width = sample['meta']['width']
obj_idx = sample['meta']['obj_idx']
obj_nums = [int(obj_num) for obj_num in obj_nums]
obj_idx = [int(_obj_idx) for _obj_idx in obj_idx]
current_img = sample['current_img']
current_img = current_img.cuda(gpu_id, non_blocking=True)
if frame_idx == 0:
videoWriter = cv2.VideoWriter(
output_video_path, fourcc, video_fps,
(int(output_width), int(output_height)))
print(
'Object number: {}. Inference size: {}x{}. Output size: {}x{}.'
.format(obj_nums[0],
current_img.size()[2],
current_img.size()[3], int(output_height),
int(output_width)))
current_label = sample['current_label'].cuda(
gpu_id, non_blocking=True).float()
current_label = F.interpolate(current_label,
size=current_img.size()[2:],
mode="nearest")
# add reference frame
engine.add_reference_frame(current_img,
current_label,
frame_step=0,
obj_nums=obj_nums)
else:
print('Processing image {}...'.format(img_name))
# predict segmentation
engine.match_propogate_one_frame(current_img)
pred_logit = engine.decode_current_logits(
(output_height, output_width))
pred_prob = torch.softmax(pred_logit, dim=1)
pred_label = torch.argmax(pred_prob, dim=1,
keepdim=True).float()
_pred_label = F.interpolate(pred_label,
size=engine.input_size_2d,
mode="nearest")
# update memory
engine.update_memory(_pred_label)
# save results
input_image_path = os.path.join(image_seq_root, img_name)
output_mask_path = os.path.join(
output_mask_seq_root,
img_name.split('.')[0] + '.png')
pred_label = Image.fromarray(
pred_label.squeeze(0).squeeze(0).cpu().numpy().astype(
'uint8')).convert('P')
pred_label.putpalette(_palette)
pred_label.save(output_mask_path)
input_image = Image.open(input_image_path)
overlayed_image = overlay(
np.array(input_image, dtype=np.uint8),
np.array(pred_label, dtype=np.uint8), color_palette)
videoWriter.write(overlayed_image[..., [2, 1, 0]])
print('Save a visualization video to {}.'.format(output_video_path))
videoWriter.release()
def main():
import argparse
parser = argparse.ArgumentParser(description="AOT Demo")
parser.add_argument('--exp_name', type=str, default='default')
parser.add_argument('--stage', type=str, default='pre_ytb_dav')
parser.add_argument('--model', type=str, default='r50_aotl')
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--data_path', type=str, default='./datasets/Demo')
parser.add_argument('--output_path', type=str, default='./demo_output')
parser.add_argument('--ckpt_path',
type=str,
default='./pretrain_models/R50_AOTL_PRE_YTB_DAV.pth')
parser.add_argument('--max_resolution', type=float, default=480 * 1.3)
parser.add_argument('--amp', action='store_true')
parser.set_defaults(amp=False)
args = parser.parse_args()
engine_config = importlib.import_module('configs.' + args.stage)
cfg = engine_config.EngineConfig(args.exp_name, args.model)
cfg.TEST_GPU_ID = args.gpu_id
cfg.TEST_CKPT_PATH = args.ckpt_path
cfg.TEST_DATA_PATH = args.data_path
cfg.TEST_OUTPUT_PATH = args.output_path
cfg.TEST_MIN_SIZE = None
cfg.TEST_MAX_SIZE = args.max_resolution * 800. / 480.
if args.amp:
with torch.cuda.amp.autocast(enabled=True):
demo(cfg)
else:
demo(cfg)
if __name__ == '__main__':
main()
|