File size: 26,250 Bytes
04daa95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\Dubai Computers\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n",
      "c:\\Users\\Dubai Computers\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\groundingdino\\models\\GroundingDINO\\ms_deform_attn.py:31: UserWarning: Failed to load custom C++ ops. Running on CPU mode Only!\n",
      "  warnings.warn(\"Failed to load custom C++ ops. Running on CPU mode Only!\")\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import cv2\n",
    "from SegTracker import SegTracker\n",
    "from model_args import aot_args,sam_args,segtracker_args\n",
    "from PIL import Image\n",
    "from aot_tracker import _palette\n",
    "import numpy as np\n",
    "import torch\n",
    "import imageio\n",
    "import matplotlib.pyplot as plt\n",
    "from scipy.ndimage import binary_dilation\n",
    "import gc\n",
    "def save_prediction(pred_mask,output_dir,file_name):\n",
    "    save_mask = Image.fromarray(pred_mask.astype(np.uint8))\n",
    "    save_mask = save_mask.convert(mode='P')\n",
    "    save_mask.putpalette(_palette)\n",
    "    save_mask.save(os.path.join(output_dir,file_name))\n",
    "def colorize_mask(pred_mask):\n",
    "    save_mask = Image.fromarray(pred_mask.astype(np.uint8))\n",
    "    save_mask = save_mask.convert(mode='P')\n",
    "    save_mask.putpalette(_palette)\n",
    "    save_mask = save_mask.convert(mode='RGB')\n",
    "    return np.array(save_mask)\n",
    "def draw_mask(img, mask, alpha=0.7, id_countour=False):\n",
    "    img_mask = np.zeros_like(img)\n",
    "    img_mask = img\n",
    "    if id_countour:\n",
    "        # very slow ~ 1s per image\n",
    "        obj_ids = np.unique(mask)\n",
    "        obj_ids = obj_ids[obj_ids!=0]\n",
    "\n",
    "        for id in obj_ids:\n",
    "            # Overlay color on  binary mask\n",
    "            if id <= 255:\n",
    "                color = _palette[id*3:id*3+3]\n",
    "            else:\n",
    "                color = [0,0,0]\n",
    "            foreground = img * (1-alpha) + np.ones_like(img) * alpha * np.array(color)\n",
    "            binary_mask = (mask == id)\n",
    "\n",
    "            # Compose image\n",
    "            img_mask[binary_mask] = foreground[binary_mask]\n",
    "\n",
    "            countours = binary_dilation(binary_mask,iterations=1) ^ binary_mask\n",
    "            img_mask[countours, :] = 0\n",
    "    else:\n",
    "        binary_mask = (mask!=0)\n",
    "        countours = binary_dilation(binary_mask,iterations=1) ^ binary_mask\n",
    "        foreground = img*(1-alpha)+colorize_mask(mask)*alpha\n",
    "        img_mask[binary_mask] = foreground[binary_mask]\n",
    "        img_mask[countours,:] = 0\n",
    "        \n",
    "    return img_mask.astype(img.dtype)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Set parameters for input and output"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "video_name = 'cars'\n",
    "io_args = {\n",
    "    'input_video': f'./assets/{video_name}.mp4',\n",
    "    'output_mask_dir': f'./assets/{video_name}_masks', # save pred masks\n",
    "    'output_video': f'./assets/{video_name}_seg.mp4', # mask+frame vizualization, mp4 or avi, else the same as input video\n",
    "    'output_gif': f'./assets/{video_name}_seg.gif', # mask visualization\n",
    "}"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Tuning Grounding-DINO and SAM on the First Frame for Good Initialization"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "ename": "AssertionError",
     "evalue": "Torch not compiled with CUDA enabled",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mAssertionError\u001b[0m                            Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[3], line 27\u001b[0m\n\u001b[0;32m     25\u001b[0m cap \u001b[39m=\u001b[39m cv2\u001b[39m.\u001b[39mVideoCapture(io_args[\u001b[39m'\u001b[39m\u001b[39minput_video\u001b[39m\u001b[39m'\u001b[39m])\n\u001b[0;32m     26\u001b[0m frame_idx \u001b[39m=\u001b[39m \u001b[39m0\u001b[39m\n\u001b[1;32m---> 27\u001b[0m segtracker \u001b[39m=\u001b[39m SegTracker(segtracker_args,sam_args,aot_args)\n\u001b[0;32m     28\u001b[0m segtracker\u001b[39m.\u001b[39mrestart_tracker()\n\u001b[0;32m     29\u001b[0m \u001b[39mwith\u001b[39;00m torch\u001b[39m.\u001b[39mcuda\u001b[39m.\u001b[39mamp\u001b[39m.\u001b[39mautocast():\n",
      "File \u001b[1;32md:\\05 Dr\\Segmentation\\Segment-and-Track-Anything\\SegTracker.py:19\u001b[0m, in \u001b[0;36mSegTracker.__init__\u001b[1;34m(self, segtracker_args, sam_args, aot_args)\u001b[0m\n\u001b[0;32m     15\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__init__\u001b[39m(\u001b[39mself\u001b[39m,segtracker_args, sam_args, aot_args) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m     16\u001b[0m     \u001b[39m\"\"\"\u001b[39;00m\n\u001b[0;32m     17\u001b[0m \u001b[39m     Initialize SAM and AOT.\u001b[39;00m\n\u001b[0;32m     18\u001b[0m \u001b[39m    \"\"\"\u001b[39;00m\n\u001b[1;32m---> 19\u001b[0m     \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msam \u001b[39m=\u001b[39m Segmentor(sam_args)\n\u001b[0;32m     20\u001b[0m     \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtracker \u001b[39m=\u001b[39m get_aot(aot_args)\n\u001b[0;32m     21\u001b[0m     \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdetector \u001b[39m=\u001b[39m Detector(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39msam\u001b[39m.\u001b[39mdevice)\n",
      "File \u001b[1;32md:\\05 Dr\\Segmentation\\Segment-and-Track-Anything\\tool\\segmentor.py:16\u001b[0m, in \u001b[0;36mSegmentor.__init__\u001b[1;34m(self, sam_args)\u001b[0m\n\u001b[0;32m     14\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdevice \u001b[39m=\u001b[39m sam_args[\u001b[39m\"\u001b[39m\u001b[39mgpu_id\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m     15\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msam \u001b[39m=\u001b[39m sam_model_registry[sam_args[\u001b[39m\"\u001b[39m\u001b[39mmodel_type\u001b[39m\u001b[39m\"\u001b[39m]](checkpoint\u001b[39m=\u001b[39msam_args[\u001b[39m\"\u001b[39m\u001b[39msam_checkpoint\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m---> 16\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msam\u001b[39m.\u001b[39;49mto(device\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mdevice)\n\u001b[0;32m     17\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39meverything_generator \u001b[39m=\u001b[39m SamAutomaticMaskGenerator(model\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39msam, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39msam_args[\u001b[39m'\u001b[39m\u001b[39mgenerator_args\u001b[39m\u001b[39m'\u001b[39m])\n\u001b[0;32m     18\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39minteractive_predictor \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39meverything_generator\u001b[39m.\u001b[39mpredictor\n",
      "File \u001b[1;32mc:\\Users\\Dubai Computers\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\\nn\\modules\\module.py:1145\u001b[0m, in \u001b[0;36mModule.to\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1141\u001b[0m         \u001b[39mreturn\u001b[39;00m t\u001b[39m.\u001b[39mto(device, dtype \u001b[39mif\u001b[39;00m t\u001b[39m.\u001b[39mis_floating_point() \u001b[39mor\u001b[39;00m t\u001b[39m.\u001b[39mis_complex() \u001b[39melse\u001b[39;00m \u001b[39mNone\u001b[39;00m,\n\u001b[0;32m   1142\u001b[0m                     non_blocking, memory_format\u001b[39m=\u001b[39mconvert_to_format)\n\u001b[0;32m   1143\u001b[0m     \u001b[39mreturn\u001b[39;00m t\u001b[39m.\u001b[39mto(device, dtype \u001b[39mif\u001b[39;00m t\u001b[39m.\u001b[39mis_floating_point() \u001b[39mor\u001b[39;00m t\u001b[39m.\u001b[39mis_complex() \u001b[39melse\u001b[39;00m \u001b[39mNone\u001b[39;00m, non_blocking)\n\u001b[1;32m-> 1145\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_apply(convert)\n",
      "File \u001b[1;32mc:\\Users\\Dubai Computers\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\\nn\\modules\\module.py:797\u001b[0m, in \u001b[0;36mModule._apply\u001b[1;34m(self, fn)\u001b[0m\n\u001b[0;32m    795\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_apply\u001b[39m(\u001b[39mself\u001b[39m, fn):\n\u001b[0;32m    796\u001b[0m     \u001b[39mfor\u001b[39;00m module \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mchildren():\n\u001b[1;32m--> 797\u001b[0m         module\u001b[39m.\u001b[39;49m_apply(fn)\n\u001b[0;32m    799\u001b[0m     \u001b[39mdef\u001b[39;00m \u001b[39mcompute_should_use_set_data\u001b[39m(tensor, tensor_applied):\n\u001b[0;32m    800\u001b[0m         \u001b[39mif\u001b[39;00m torch\u001b[39m.\u001b[39m_has_compatible_shallow_copy_type(tensor, tensor_applied):\n\u001b[0;32m    801\u001b[0m             \u001b[39m# If the new tensor has compatible tensor type as the existing tensor,\u001b[39;00m\n\u001b[0;32m    802\u001b[0m             \u001b[39m# the current behavior is to change the tensor in-place using `.data =`,\u001b[39;00m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    807\u001b[0m             \u001b[39m# global flag to let the user control whether they want the future\u001b[39;00m\n\u001b[0;32m    808\u001b[0m             \u001b[39m# behavior of overwriting the existing tensor or not.\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\Dubai Computers\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\\nn\\modules\\module.py:797\u001b[0m, in \u001b[0;36mModule._apply\u001b[1;34m(self, fn)\u001b[0m\n\u001b[0;32m    795\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_apply\u001b[39m(\u001b[39mself\u001b[39m, fn):\n\u001b[0;32m    796\u001b[0m     \u001b[39mfor\u001b[39;00m module \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mchildren():\n\u001b[1;32m--> 797\u001b[0m         module\u001b[39m.\u001b[39;49m_apply(fn)\n\u001b[0;32m    799\u001b[0m     \u001b[39mdef\u001b[39;00m \u001b[39mcompute_should_use_set_data\u001b[39m(tensor, tensor_applied):\n\u001b[0;32m    800\u001b[0m         \u001b[39mif\u001b[39;00m torch\u001b[39m.\u001b[39m_has_compatible_shallow_copy_type(tensor, tensor_applied):\n\u001b[0;32m    801\u001b[0m             \u001b[39m# If the new tensor has compatible tensor type as the existing tensor,\u001b[39;00m\n\u001b[0;32m    802\u001b[0m             \u001b[39m# the current behavior is to change the tensor in-place using `.data =`,\u001b[39;00m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    807\u001b[0m             \u001b[39m# global flag to let the user control whether they want the future\u001b[39;00m\n\u001b[0;32m    808\u001b[0m             \u001b[39m# behavior of overwriting the existing tensor or not.\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\Dubai Computers\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\\nn\\modules\\module.py:797\u001b[0m, in \u001b[0;36mModule._apply\u001b[1;34m(self, fn)\u001b[0m\n\u001b[0;32m    795\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_apply\u001b[39m(\u001b[39mself\u001b[39m, fn):\n\u001b[0;32m    796\u001b[0m     \u001b[39mfor\u001b[39;00m module \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mchildren():\n\u001b[1;32m--> 797\u001b[0m         module\u001b[39m.\u001b[39;49m_apply(fn)\n\u001b[0;32m    799\u001b[0m     \u001b[39mdef\u001b[39;00m \u001b[39mcompute_should_use_set_data\u001b[39m(tensor, tensor_applied):\n\u001b[0;32m    800\u001b[0m         \u001b[39mif\u001b[39;00m torch\u001b[39m.\u001b[39m_has_compatible_shallow_copy_type(tensor, tensor_applied):\n\u001b[0;32m    801\u001b[0m             \u001b[39m# If the new tensor has compatible tensor type as the existing tensor,\u001b[39;00m\n\u001b[0;32m    802\u001b[0m             \u001b[39m# the current behavior is to change the tensor in-place using `.data =`,\u001b[39;00m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    807\u001b[0m             \u001b[39m# global flag to let the user control whether they want the future\u001b[39;00m\n\u001b[0;32m    808\u001b[0m             \u001b[39m# behavior of overwriting the existing tensor or not.\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\Dubai Computers\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\\nn\\modules\\module.py:820\u001b[0m, in \u001b[0;36mModule._apply\u001b[1;34m(self, fn)\u001b[0m\n\u001b[0;32m    816\u001b[0m \u001b[39m# Tensors stored in modules are graph leaves, and we don't want to\u001b[39;00m\n\u001b[0;32m    817\u001b[0m \u001b[39m# track autograd history of `param_applied`, so we have to use\u001b[39;00m\n\u001b[0;32m    818\u001b[0m \u001b[39m# `with torch.no_grad():`\u001b[39;00m\n\u001b[0;32m    819\u001b[0m \u001b[39mwith\u001b[39;00m torch\u001b[39m.\u001b[39mno_grad():\n\u001b[1;32m--> 820\u001b[0m     param_applied \u001b[39m=\u001b[39m fn(param)\n\u001b[0;32m    821\u001b[0m should_use_set_data \u001b[39m=\u001b[39m compute_should_use_set_data(param, param_applied)\n\u001b[0;32m    822\u001b[0m \u001b[39mif\u001b[39;00m should_use_set_data:\n",
      "File \u001b[1;32mc:\\Users\\Dubai Computers\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\\nn\\modules\\module.py:1143\u001b[0m, in \u001b[0;36mModule.to.<locals>.convert\u001b[1;34m(t)\u001b[0m\n\u001b[0;32m   1140\u001b[0m \u001b[39mif\u001b[39;00m convert_to_format \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m t\u001b[39m.\u001b[39mdim() \u001b[39min\u001b[39;00m (\u001b[39m4\u001b[39m, \u001b[39m5\u001b[39m):\n\u001b[0;32m   1141\u001b[0m     \u001b[39mreturn\u001b[39;00m t\u001b[39m.\u001b[39mto(device, dtype \u001b[39mif\u001b[39;00m t\u001b[39m.\u001b[39mis_floating_point() \u001b[39mor\u001b[39;00m t\u001b[39m.\u001b[39mis_complex() \u001b[39melse\u001b[39;00m \u001b[39mNone\u001b[39;00m,\n\u001b[0;32m   1142\u001b[0m                 non_blocking, memory_format\u001b[39m=\u001b[39mconvert_to_format)\n\u001b[1;32m-> 1143\u001b[0m \u001b[39mreturn\u001b[39;00m t\u001b[39m.\u001b[39;49mto(device, dtype \u001b[39mif\u001b[39;49;00m t\u001b[39m.\u001b[39;49mis_floating_point() \u001b[39mor\u001b[39;49;00m t\u001b[39m.\u001b[39;49mis_complex() \u001b[39melse\u001b[39;49;00m \u001b[39mNone\u001b[39;49;00m, non_blocking)\n",
      "File \u001b[1;32mc:\\Users\\Dubai Computers\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\torch\\cuda\\__init__.py:239\u001b[0m, in \u001b[0;36m_lazy_init\u001b[1;34m()\u001b[0m\n\u001b[0;32m    235\u001b[0m     \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\n\u001b[0;32m    236\u001b[0m         \u001b[39m\"\u001b[39m\u001b[39mCannot re-initialize CUDA in forked subprocess. To use CUDA with \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m    237\u001b[0m         \u001b[39m\"\u001b[39m\u001b[39mmultiprocessing, you must use the \u001b[39m\u001b[39m'\u001b[39m\u001b[39mspawn\u001b[39m\u001b[39m'\u001b[39m\u001b[39m start method\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m    238\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mhasattr\u001b[39m(torch\u001b[39m.\u001b[39m_C, \u001b[39m'\u001b[39m\u001b[39m_cuda_getDeviceCount\u001b[39m\u001b[39m'\u001b[39m):\n\u001b[1;32m--> 239\u001b[0m     \u001b[39mraise\u001b[39;00m \u001b[39mAssertionError\u001b[39;00m(\u001b[39m\"\u001b[39m\u001b[39mTorch not compiled with CUDA enabled\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m    240\u001b[0m \u001b[39mif\u001b[39;00m _cudart \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m    241\u001b[0m     \u001b[39mraise\u001b[39;00m \u001b[39mAssertionError\u001b[39;00m(\n\u001b[0;32m    242\u001b[0m         \u001b[39m\"\u001b[39m\u001b[39mlibcudart functions unavailable. It looks like you have a broken build?\u001b[39m\u001b[39m\"\u001b[39m)\n",
      "\u001b[1;31mAssertionError\u001b[0m: Torch not compiled with CUDA enabled"
     ]
    }
   ],
   "source": [
    "# choose good parameters in sam_args based on the first frame segmentation result\n",
    "# other arguments can be modified in model_args.py\n",
    "# note the object number limit is 255 by default, which requires < 10GB GPU memory with amp\n",
    "sam_args['generator_args'] = {\n",
    "        'points_per_side': 30,\n",
    "        'pred_iou_thresh': 0.8,\n",
    "        'stability_score_thresh': 0.9,\n",
    "        'crop_n_layers': 1,\n",
    "        'crop_n_points_downscale_factor': 2,\n",
    "        'min_mask_region_area': 200,\n",
    "    }\n",
    "\n",
    "# Set Text args\n",
    "'''\n",
    "parameter:\n",
    "    grounding_caption: Text prompt to detect objects in key-frames\n",
    "    box_threshold: threshold for box \n",
    "    text_threshold: threshold for label(text)\n",
    "    box_size_threshold: If the size ratio between the box and the frame is larger than the box_size_threshold, the box will be ignored. This is used to filter out large boxes.\n",
    "    reset_image: reset the image embeddings for SAM\n",
    "'''\n",
    "grounding_caption = \"car.suv\"\n",
    "box_threshold, text_threshold, box_size_threshold, reset_image = 0.35, 0.5, 0.5, True\n",
    "\n",
    "cap = cv2.VideoCapture(io_args['input_video'])\n",
    "frame_idx = 0\n",
    "segtracker = SegTracker(segtracker_args,sam_args,aot_args)\n",
    "segtracker.restart_tracker()\n",
    "with torch.cuda.amp.autocast():\n",
    "    while cap.isOpened():\n",
    "        ret, frame = cap.read()\n",
    "        frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)\n",
    "        pred_mask, annotated_frame = segtracker.detect_and_seg(frame, grounding_caption, box_threshold, text_threshold, box_size_threshold)\n",
    "        torch.cuda.empty_cache()\n",
    "        obj_ids = np.unique(pred_mask)\n",
    "        obj_ids = obj_ids[obj_ids!=0]\n",
    "        print(\"processed frame {}, obj_num {}\".format(frame_idx,len(obj_ids)),end='\\n')\n",
    "        break\n",
    "    cap.release()\n",
    "    init_res = draw_mask(annotated_frame, pred_mask,id_countour=False)\n",
    "    plt.figure(figsize=(10,10))\n",
    "    plt.axis('off')\n",
    "    plt.imshow(init_res)\n",
    "    plt.show()\n",
    "    plt.figure(figsize=(10,10))\n",
    "    plt.axis('off')\n",
    "    plt.imshow(colorize_mask(pred_mask))\n",
    "    plt.show()\n",
    "\n",
    "    del segtracker\n",
    "    torch.cuda.empty_cache()\n",
    "    gc.collect()"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Generate Results for the Whole Video"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# For every sam_gap frames, we use SAM to find new objects and add them for tracking\n",
    "# larger sam_gap is faster but may not spot new objects in time\n",
    "segtracker_args = {\n",
    "    'sam_gap': 49, # the interval to run sam to segment new objects\n",
    "    'min_area': 200, # minimal mask area to add a new mask as a new object\n",
    "    'max_obj_num': 255, # maximal object number to track in a video\n",
    "    'min_new_obj_iou': 0.8, # the area of a new object in the background should > 80% \n",
    "}\n",
    "\n",
    "# source video to segment\n",
    "cap = cv2.VideoCapture(io_args['input_video'])\n",
    "fps = cap.get(cv2.CAP_PROP_FPS)\n",
    "# output masks\n",
    "output_dir = io_args['output_mask_dir']\n",
    "if not os.path.exists(output_dir):\n",
    "    os.makedirs(output_dir)\n",
    "pred_list = []\n",
    "masked_pred_list = []\n",
    "\n",
    "torch.cuda.empty_cache()\n",
    "gc.collect()\n",
    "sam_gap = segtracker_args['sam_gap']\n",
    "frame_idx = 0\n",
    "segtracker = SegTracker(segtracker_args, sam_args, aot_args)\n",
    "segtracker.restart_tracker()\n",
    "\n",
    "with torch.cuda.amp.autocast():\n",
    "    while cap.isOpened():\n",
    "        ret, frame = cap.read()\n",
    "        if not ret:\n",
    "            break\n",
    "        frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)\n",
    "        if frame_idx == 0:\n",
    "            pred_mask, _ = segtracker.detect_and_seg(frame, grounding_caption, box_threshold, text_threshold, box_size_threshold, reset_image)\n",
    "            # pred_mask = cv2.imread('./debug/first_frame_mask.png', 0)\n",
    "            torch.cuda.empty_cache()\n",
    "            gc.collect()\n",
    "            segtracker.add_reference(frame, pred_mask)\n",
    "        elif (frame_idx % sam_gap) == 0:\n",
    "            seg_mask, _ = segtracker.detect_and_seg(frame, grounding_caption, box_threshold, text_threshold, box_size_threshold, reset_image)\n",
    "            save_prediction(seg_mask, './debug/seg_result', str(frame_idx)+'.png')\n",
    "            torch.cuda.empty_cache()\n",
    "            gc.collect()\n",
    "            track_mask = segtracker.track(frame)\n",
    "            save_prediction(track_mask, './debug/aot_result', str(frame_idx)+'.png')\n",
    "            # find new objects, and update tracker with new objects\n",
    "            new_obj_mask = segtracker.find_new_objs(track_mask, seg_mask)\n",
    "            if np.sum(new_obj_mask > 0) >  frame.shape[0] * frame.shape[1] * 0.4:\n",
    "                new_obj_mask = np.zeros_like(new_obj_mask)\n",
    "            save_prediction(new_obj_mask,output_dir,str(frame_idx)+'_new.png')\n",
    "            pred_mask = track_mask + new_obj_mask\n",
    "            # segtracker.restart_tracker()\n",
    "            segtracker.add_reference(frame, pred_mask)\n",
    "        else:\n",
    "            pred_mask = segtracker.track(frame,update_memory=True)\n",
    "        torch.cuda.empty_cache()\n",
    "        gc.collect()\n",
    "        \n",
    "        save_prediction(pred_mask,output_dir,str(frame_idx)+'.png')\n",
    "        # masked_frame = draw_mask(frame,pred_mask)\n",
    "        # masked_pred_list.append(masked_frame)\n",
    "        # plt.imshow(masked_frame)\n",
    "        # plt.show() \n",
    "        \n",
    "        pred_list.append(pred_mask)\n",
    "        \n",
    "        \n",
    "        print(\"processed frame {}, obj_num {}\".format(frame_idx,segtracker.get_obj_num()),end='\\r')\n",
    "        frame_idx += 1\n",
    "    cap.release()\n",
    "    print('\\nfinished')"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Save results for visualization"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# draw pred mask on frame and save as a video\n",
    "cap = cv2.VideoCapture(io_args['input_video'])\n",
    "fps = cap.get(cv2.CAP_PROP_FPS)\n",
    "width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))\n",
    "height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))\n",
    "num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
    "\n",
    "if io_args['input_video'][-3:]=='mp4':\n",
    "    fourcc =  cv2.VideoWriter_fourcc(*\"mp4v\")\n",
    "elif io_args['input_video'][-3:] == 'avi':\n",
    "    fourcc =  cv2.VideoWriter_fourcc(*\"MJPG\")\n",
    "    # fourcc = cv2.VideoWriter_fourcc(*\"XVID\")\n",
    "else:\n",
    "    fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))\n",
    "out = cv2.VideoWriter(io_args['output_video'], fourcc, fps, (width, height))\n",
    "\n",
    "frame_idx = 0\n",
    "while cap.isOpened():\n",
    "    ret, frame = cap.read()\n",
    "    if not ret:\n",
    "        break\n",
    "    frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)\n",
    "    pred_mask = pred_list[frame_idx]\n",
    "    masked_frame = draw_mask(frame,pred_mask)\n",
    "    # masked_frame = masked_pred_list[frame_idx]\n",
    "    masked_frame = cv2.cvtColor(masked_frame,cv2.COLOR_RGB2BGR)\n",
    "    out.write(masked_frame)\n",
    "    print('frame {} writed'.format(frame_idx),end='\\r')\n",
    "    frame_idx += 1\n",
    "out.release()\n",
    "cap.release()\n",
    "print(\"\\n{} saved\".format(io_args['output_video']))\n",
    "print('\\nfinished')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# save colorized masks as a gif\n",
    "imageio.mimsave(io_args['output_gif'],pred_list,fps=fps)\n",
    "print(\"{} saved\".format(io_args['output_gif']))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "21"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# manually release memory (after cuda out of memory)\n",
    "del segtracker\n",
    "torch.cuda.empty_cache()\n",
    "gc.collect()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.8.5 64-bit ('ldm': conda)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "536611da043600e50719c9460971b5220bad26cd4a87e5994bfd4c9e9e5e7fb0"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}