Zeeshan01's picture
Upload folder using huggingface_hub
04daa95
raw
history blame
19.8 kB
import math
import warnings
import random
import numbers
import numpy as np
from PIL import Image, ImageFilter
from collections.abc import Sequence
import torch
import torchvision.transforms.functional as TF
_pil_interpolation_to_str = {
Image.NEAREST: 'PIL.Image.NEAREST',
Image.BILINEAR: 'PIL.Image.BILINEAR',
Image.BICUBIC: 'PIL.Image.BICUBIC',
Image.LANCZOS: 'PIL.Image.LANCZOS',
Image.HAMMING: 'PIL.Image.HAMMING',
Image.BOX: 'PIL.Image.BOX',
}
def _get_image_size(img):
if TF._is_pil_image(img):
return img.size
elif isinstance(img, torch.Tensor) and img.dim() > 2:
return img.shape[-2:][::-1]
else:
raise TypeError("Unexpected type {}".format(type(img)))
class RandomHorizontalFlip(object):
"""Horizontal flip the given PIL Image randomly with a given probability.
Args:
p (float): probability of the image being flipped. Default value is 0.5
"""
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, mask):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Randomly flipped image.
"""
if random.random() < self.p:
img = TF.hflip(img)
mask = TF.hflip(mask)
return img, mask
def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)
class RandomVerticalFlip(object):
"""Vertical flip the given PIL Image randomly with a given probability.
Args:
p (float): probability of the image being flipped. Default value is 0.5
"""
def __init__(self, p=0.5):
self.p = p
def __call__(self, img, mask):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Randomly flipped image.
"""
if random.random() < self.p:
img = TF.vflip(img)
mask = TF.vflip(mask)
return img, mask
def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)
class GaussianBlur(object):
"""Gaussian blur augmentation from SimCLR: https://arxiv.org/abs/2002.05709"""
def __init__(self, sigma=[.1, 2.]):
self.sigma = sigma
def __call__(self, x):
sigma = random.uniform(self.sigma[0], self.sigma[1])
x = x.filter(ImageFilter.GaussianBlur(radius=sigma))
return x
class RandomAffine(object):
"""Random affine transformation of the image keeping center invariant
Args:
degrees (sequence or float or int): Range of degrees to select from.
If degrees is a number instead of sequence like (min, max), the range of degrees
will be (-degrees, +degrees). Set to 0 to deactivate rotations.
translate (tuple, optional): tuple of maximum absolute fraction for horizontal
and vertical translations. For example translate=(a, b), then horizontal shift
is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
randomly sampled from the range a <= scale <= b. Will keep original scale by default.
shear (sequence or float or int, optional): Range of degrees to select from.
If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
will be apllied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
Will not apply shear by default
resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
An optional resampling filter. See `filters`_ for more information.
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
fillcolor (tuple or int): Optional fill color (Tuple for RGB Image And int for grayscale) for the area
outside the transform in the output image.(Pillow>=5.0.0)
.. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
"""
def __init__(self,
degrees,
translate=None,
scale=None,
shear=None,
resample=False,
fillcolor=0):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError(
"If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
"degrees should be a list or tuple and it must be of length 2."
self.degrees = degrees
if translate is not None:
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"translate should be a list or tuple and it must be of length 2."
for t in translate:
if not (0.0 <= t <= 1.0):
raise ValueError(
"translation values should be between 0 and 1")
self.translate = translate
if scale is not None:
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
"scale should be a list or tuple and it must be of length 2."
for s in scale:
if s <= 0:
raise ValueError("scale values should be positive")
self.scale = scale
if shear is not None:
if isinstance(shear, numbers.Number):
if shear < 0:
raise ValueError(
"If shear is a single number, it must be positive.")
self.shear = (-shear, shear)
else:
assert isinstance(shear, (tuple, list)) and \
(len(shear) == 2 or len(shear) == 4), \
"shear should be a list or tuple and it must be of length 2 or 4."
# X-Axis shear with [min, max]
if len(shear) == 2:
self.shear = [shear[0], shear[1], 0., 0.]
elif len(shear) == 4:
self.shear = [s for s in shear]
else:
self.shear = shear
self.resample = resample
self.fillcolor = fillcolor
@staticmethod
def get_params(degrees, translate, scale_ranges, shears, img_size):
"""Get parameters for affine transformation
Returns:
sequence: params to be passed to the affine transformation
"""
angle = random.uniform(degrees[0], degrees[1])
if translate is not None:
max_dx = translate[0] * img_size[0]
max_dy = translate[1] * img_size[1]
translations = (np.round(random.uniform(-max_dx, max_dx)),
np.round(random.uniform(-max_dy, max_dy)))
else:
translations = (0, 0)
if scale_ranges is not None:
scale = random.uniform(scale_ranges[0], scale_ranges[1])
else:
scale = 1.0
if shears is not None:
if len(shears) == 2:
shear = [random.uniform(shears[0], shears[1]), 0.]
elif len(shears) == 4:
shear = [
random.uniform(shears[0], shears[1]),
random.uniform(shears[2], shears[3])
]
else:
shear = 0.0
return angle, translations, scale, shear
def __call__(self, img, mask):
"""
img (PIL Image): Image to be transformed.
Returns:
PIL Image: Affine transformed image.
"""
ret = self.get_params(self.degrees, self.translate, self.scale,
self.shear, img.size)
img = TF.affine(img,
*ret,
resample=self.resample,
fillcolor=self.fillcolor)
mask = TF.affine(mask, *ret, resample=Image.NEAREST, fillcolor=0)
return img, mask
def __repr__(self):
s = '{name}(degrees={degrees}'
if self.translate is not None:
s += ', translate={translate}'
if self.scale is not None:
s += ', scale={scale}'
if self.shear is not None:
s += ', shear={shear}'
if self.resample > 0:
s += ', resample={resample}'
if self.fillcolor != 0:
s += ', fillcolor={fillcolor}'
s += ')'
d = dict(self.__dict__)
d['resample'] = _pil_interpolation_to_str[d['resample']]
return s.format(name=self.__class__.__name__, **d)
class RandomCrop(object):
"""Crop the given PIL Image at a random location.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
padding (int or sequence, optional): Optional padding on each border
of the image. Default is None, i.e no padding. If a sequence of length
4 is provided, it is used to pad left, top, right, bottom borders
respectively. If a sequence of length 2 is provided, it is used to
pad left/right, top/bottom borders, respectively.
pad_if_needed (boolean): It will pad the image if smaller than the
desired size to avoid raising an exception. Since cropping is done
after padding, the padding seems to be done at a random offset.
fill: Pixel fill value for constant fill. Default is 0. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
"""
def __init__(self,
size,
padding=None,
pad_if_needed=False,
fill=0,
padding_mode='constant'):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
self.pad_if_needed = pad_if_needed
self.fill = fill
self.padding_mode = padding_mode
@staticmethod
def get_params(img, output_size):
"""Get parameters for ``crop`` for a random crop.
Args:
img (PIL Image): Image to be cropped.
output_size (tuple): Expected output size of the crop.
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
"""
w, h = _get_image_size(img)
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
def __call__(self, img, mask):
"""
Args:
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
# if self.padding is not None:
# img = TF.pad(img, self.padding, self.fill, self.padding_mode)
#
# # pad the width if needed
# if self.pad_if_needed and img.size[0] < self.size[1]:
# img = TF.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
# # pad the height if needed
# if self.pad_if_needed and img.size[1] < self.size[0]:
# img = TF.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
i, j, h, w = self.get_params(img, self.size)
img = TF.crop(img, i, j, h, w)
mask = TF.crop(mask, i, j, h, w)
return img, mask
def __repr__(self):
return self.__class__.__name__ + '(size={0}, padding={1})'.format(
self.size, self.padding)
class RandomResizedCrop(object):
"""Crop the given PIL Image to random size and aspect ratio.
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: expected output size of each edge
scale: range of size of the origin size cropped
ratio: range of aspect ratio of the origin aspect ratio cropped
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(self,
size,
scale=(0.08, 1.0),
ratio=(3. / 4., 4. / 3.),
interpolation=Image.BILINEAR):
if isinstance(size, (tuple, list)):
self.size = size
else:
self.size = (size, size)
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
warnings.warn("range should be of kind (min, max)")
self.interpolation = interpolation
self.scale = scale
self.ratio = ratio
@staticmethod
def get_params(img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (PIL Image): Image to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
width, height = _get_image_size(img)
area = height * width
for _ in range(10):
target_area = random.uniform(*scale) * area
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
aspect_ratio = math.exp(random.uniform(*log_ratio))
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if 0 < w <= width and 0 < h <= height:
i = random.randint(0, height - h)
j = random.randint(0, width - w)
return i, j, h, w
# Fallback to central crop
in_ratio = float(width) / float(height)
if (in_ratio < min(ratio)):
w = width
h = int(round(w / min(ratio)))
elif (in_ratio > max(ratio)):
h = height
w = int(round(h * max(ratio)))
else: # whole image
w = width
h = height
i = (height - h) // 2
j = (width - w) // 2
return i, j, h, w
def __call__(self, img, mask):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(img, self.scale, self.ratio)
# print(i, j, h, w)
img = TF.resized_crop(img, i, j, h, w, self.size, self.interpolation)
mask = TF.resized_crop(mask, i, j, h, w, self.size, Image.NEAREST)
return img, mask
def __repr__(self):
interpolate_str = _pil_interpolation_to_str[self.interpolation]
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += ', scale={0}'.format(
tuple(round(s, 4) for s in self.scale))
format_string += ', ratio={0}'.format(
tuple(round(r, 4) for r in self.ratio))
format_string += ', interpolation={0})'.format(interpolate_str)
return format_string
class ToOnehot(object):
"""To oneshot tensor
Args:
max_obj_n (float): Maximum number of the objects
"""
def __init__(self, max_obj_n, shuffle):
self.max_obj_n = max_obj_n
self.shuffle = shuffle
def __call__(self, mask, obj_list=None):
"""
Args:
mask (Mask in Numpy): Mask to be converted.
Returns:
Tensor: Converted mask in onehot format.
"""
new_mask = np.zeros((self.max_obj_n + 1, *mask.shape), np.uint8)
if not obj_list:
obj_list = list()
obj_max = mask.max() + 1
for i in range(1, obj_max):
tmp = (mask == i).astype(np.uint8)
if tmp.max() > 0:
obj_list.append(i)
if self.shuffle:
random.shuffle(obj_list)
obj_list = obj_list[:self.max_obj_n]
for i in range(len(obj_list)):
new_mask[i + 1] = (mask == obj_list[i]).astype(np.uint8)
new_mask[0] = 1 - np.sum(new_mask, axis=0)
return torch.from_numpy(new_mask), obj_list
def __repr__(self):
return self.__class__.__name__ + '(max_obj_n={})'.format(
self.max_obj_n)
class Resize(torch.nn.Module):
"""Resize the input image to the given size.
The image can be a PIL Image or a torch Tensor, in which case it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
Args:
size (sequence or int): Desired output size. If size is a sequence like
(h, w), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size).
In torchscript mode padding as single int is not supported, use a tuple or
list of length 1: ``[size, ]``.
interpolation (int, optional): Desired interpolation enum defined by `filters`_.
Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
and ``PIL.Image.BICUBIC`` are supported.
"""
def __init__(self, size, interpolation=Image.BILINEAR):
super().__init__()
if not isinstance(size, (int, Sequence)):
raise TypeError("Size should be int or sequence. Got {}".format(
type(size)))
if isinstance(size, Sequence) and len(size) not in (1, 2):
raise ValueError(
"If size is a sequence, it should have 1 or 2 values")
self.size = size
self.interpolation = interpolation
def forward(self, img, mask):
"""
Args:
img (PIL Image or Tensor): Image to be scaled.
Returns:
PIL Image or Tensor: Rescaled image.
"""
img = TF.resize(img, self.size, self.interpolation)
mask = TF.resize(mask, self.size, Image.NEAREST)
return img, mask
def __repr__(self):
interpolate_str = _pil_interpolation_to_str[self.interpolation]
return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(
self.size, interpolate_str)