Spaces:
Sleeping
Sleeping
import torch # for model | |
import numpy as np | |
import torch.nn as nn | |
import torch.optim as optim | |
from PIL import Image #for importing images | |
import torchvision.models as models #to load vgg 19 model | |
import torchvision.transforms as transforms | |
from tqdm import tqdm | |
import spaces | |
from dataTransform import load_image | |
from vggModel import VGGNet | |
def style_transfer(content_img, style_img, total_steps, alpha=1e5, beta=1e10, learning_rate=0.001): | |
# Preprocess the input images | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print('-'*30) | |
print(f'Device Initialized: {device}') | |
print('-'*30) | |
content_img = load_image(content_img, device) | |
style_img = load_image(style_img, device) | |
generated_img = content_img.clone().requires_grad_(True) | |
optimizer = optim.Adam([generated_img], lr = learning_rate) | |
model = VGGNet().to(device).eval() | |
# print(content_img.shape) | |
# print(style_img.shape) | |
# print(generated_img.shape) | |
for step in tqdm(range(total_steps)): | |
#first we send the 3 images from the vgg network | |
generated_feats = model(generated_img) | |
original_image_feats = model(content_img) | |
style_feats = model(style_img) | |
#defining the style loss | |
style_loss = original_loss = 0 | |
for gen_feat, orig_image_feat, styl_feat in zip(generated_feats, original_image_feats, style_feats): #looping over each feature | |
# print(gen_feat.shape) | |
# print(orig_image_feat.shape) | |
# print(styl_feat.shape) | |
batch, channel, height, width = gen_feat.shape | |
original_loss += torch.mean((gen_feat - orig_image_feat)**2) | |
# computing gram matrix for gen and style to compute style loss | |
G = gen_feat.view(channel, height*width).mm( | |
gen_feat.view(channel, height*width).t() | |
) | |
# correlation matrix | |
A = styl_feat.view(channel, height*width).mm( | |
styl_feat.view(channel, height*width).t() | |
) | |
style_loss += torch.mean((G-A)**2) | |
total_loss = alpha*original_loss + beta*style_loss | |
optimizer.zero_grad() | |
total_loss.backward() | |
optimizer.step() | |
if step == total_steps - 1: | |
# Postprocess and return the final generated image | |
return generated_img |