Spaces:
Sleeping
Sleeping
import torch | |
from PIL import Image | |
import torchvision.transforms as transforms #to transform the images | |
def load_image(image_path, device): | |
image_size = 356 | |
loader = transforms.Compose( | |
[ | |
transforms.Resize((image_size, image_size)), #RESIZE IMAGE | |
transforms.ToTensor() #TRANSFORM IMAGE TO TENSOR | |
] | |
) | |
image = Image.open(image_path) | |
image = loader(image).unsqueeze(0) #(h, c, w) -> (1, h, c, w) adds batch dim | |
return image.to(device) | |
def tensor_to_image(tensor): | |
tensor = tensor.clone().detach() # Ensure the tensor is detached from the graph | |
tensor = tensor.squeeze(0) # Remove batch dimension if present | |
tensor = torch.clamp(tensor, 0, 1) # Clamp the values to [0, 1] range | |
unloader = transforms.ToPILImage() | |
image = unloader(tensor.cpu()) | |
return image | |