Spaces:
Runtime error
Runtime error
File size: 160,312 Bytes
056ab49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 |
import torch
def load_from_standard_weights(input_file: str, device: str) -> dict[str, torch.Tensor]:
# Taken from: https://github.com/kjsman/stable-diffusion-pytorch/issues/7#issuecomment-1426839447
original_model = torch.load(input_file, map_location=device, weights_only = False)["state_dict"]
converted = {}
converted['diffusion'] = {}
converted['encoder'] = {}
converted['decoder'] = {}
converted['clip'] = {}
converted['diffusion']['time_embedding.linear_1.weight'] = original_model['model.diffusion_model.time_embed.0.weight']
converted['diffusion']['time_embedding.linear_1.bias'] = original_model['model.diffusion_model.time_embed.0.bias']
converted['diffusion']['time_embedding.linear_2.weight'] = original_model['model.diffusion_model.time_embed.2.weight']
converted['diffusion']['time_embedding.linear_2.bias'] = original_model['model.diffusion_model.time_embed.2.bias']
converted['diffusion']['unet.encoders.0.0.weight'] = original_model['model.diffusion_model.input_blocks.0.0.weight']
converted['diffusion']['unet.encoders.0.0.bias'] = original_model['model.diffusion_model.input_blocks.0.0.bias']
converted['diffusion']['unet.encoders.1.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.input_blocks.1.0.in_layers.0.weight']
converted['diffusion']['unet.encoders.1.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.input_blocks.1.0.in_layers.0.bias']
converted['diffusion']['unet.encoders.1.0.conv_feature.weight'] = original_model['model.diffusion_model.input_blocks.1.0.in_layers.2.weight']
converted['diffusion']['unet.encoders.1.0.conv_feature.bias'] = original_model['model.diffusion_model.input_blocks.1.0.in_layers.2.bias']
converted['diffusion']['unet.encoders.1.0.linear_time.weight'] = original_model['model.diffusion_model.input_blocks.1.0.emb_layers.1.weight']
converted['diffusion']['unet.encoders.1.0.linear_time.bias'] = original_model['model.diffusion_model.input_blocks.1.0.emb_layers.1.bias']
converted['diffusion']['unet.encoders.1.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.input_blocks.1.0.out_layers.0.weight']
converted['diffusion']['unet.encoders.1.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.input_blocks.1.0.out_layers.0.bias']
converted['diffusion']['unet.encoders.1.0.conv_merged.weight'] = original_model['model.diffusion_model.input_blocks.1.0.out_layers.3.weight']
converted['diffusion']['unet.encoders.1.0.conv_merged.bias'] = original_model['model.diffusion_model.input_blocks.1.0.out_layers.3.bias']
converted['diffusion']['unet.encoders.1.1.groupnorm.weight'] = original_model['model.diffusion_model.input_blocks.1.1.norm.weight']
converted['diffusion']['unet.encoders.1.1.groupnorm.bias'] = original_model['model.diffusion_model.input_blocks.1.1.norm.bias']
converted['diffusion']['unet.encoders.1.1.conv_input.weight'] = original_model['model.diffusion_model.input_blocks.1.1.proj_in.weight']
converted['diffusion']['unet.encoders.1.1.conv_input.bias'] = original_model['model.diffusion_model.input_blocks.1.1.proj_in.bias']
converted['diffusion']['unet.encoders.1.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.encoders.1.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.encoders.1.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.encoders.1.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.encoders.1.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.encoders.1.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.encoders.1.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.encoders.1.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.encoders.1.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.encoders.1.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.encoders.1.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.encoders.1.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.encoders.1.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.encoders.1.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.encoders.1.1.layernorm_2.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.encoders.1.1.layernorm_3.weight'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.encoders.1.1.layernorm_3.bias'] = original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.encoders.1.1.conv_output.weight'] = original_model['model.diffusion_model.input_blocks.1.1.proj_out.weight']
converted['diffusion']['unet.encoders.1.1.conv_output.bias'] = original_model['model.diffusion_model.input_blocks.1.1.proj_out.bias']
converted['diffusion']['unet.encoders.2.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.input_blocks.2.0.in_layers.0.weight']
converted['diffusion']['unet.encoders.2.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.input_blocks.2.0.in_layers.0.bias']
converted['diffusion']['unet.encoders.2.0.conv_feature.weight'] = original_model['model.diffusion_model.input_blocks.2.0.in_layers.2.weight']
converted['diffusion']['unet.encoders.2.0.conv_feature.bias'] = original_model['model.diffusion_model.input_blocks.2.0.in_layers.2.bias']
converted['diffusion']['unet.encoders.2.0.linear_time.weight'] = original_model['model.diffusion_model.input_blocks.2.0.emb_layers.1.weight']
converted['diffusion']['unet.encoders.2.0.linear_time.bias'] = original_model['model.diffusion_model.input_blocks.2.0.emb_layers.1.bias']
converted['diffusion']['unet.encoders.2.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.input_blocks.2.0.out_layers.0.weight']
converted['diffusion']['unet.encoders.2.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.input_blocks.2.0.out_layers.0.bias']
converted['diffusion']['unet.encoders.2.0.conv_merged.weight'] = original_model['model.diffusion_model.input_blocks.2.0.out_layers.3.weight']
converted['diffusion']['unet.encoders.2.0.conv_merged.bias'] = original_model['model.diffusion_model.input_blocks.2.0.out_layers.3.bias']
converted['diffusion']['unet.encoders.2.1.groupnorm.weight'] = original_model['model.diffusion_model.input_blocks.2.1.norm.weight']
converted['diffusion']['unet.encoders.2.1.groupnorm.bias'] = original_model['model.diffusion_model.input_blocks.2.1.norm.bias']
converted['diffusion']['unet.encoders.2.1.conv_input.weight'] = original_model['model.diffusion_model.input_blocks.2.1.proj_in.weight']
converted['diffusion']['unet.encoders.2.1.conv_input.bias'] = original_model['model.diffusion_model.input_blocks.2.1.proj_in.bias']
converted['diffusion']['unet.encoders.2.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.encoders.2.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.encoders.2.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.encoders.2.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.encoders.2.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.encoders.2.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.encoders.2.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.encoders.2.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.encoders.2.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.encoders.2.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.encoders.2.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.encoders.2.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.encoders.2.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.encoders.2.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.encoders.2.1.layernorm_2.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.encoders.2.1.layernorm_3.weight'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.encoders.2.1.layernorm_3.bias'] = original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.encoders.2.1.conv_output.weight'] = original_model['model.diffusion_model.input_blocks.2.1.proj_out.weight']
converted['diffusion']['unet.encoders.2.1.conv_output.bias'] = original_model['model.diffusion_model.input_blocks.2.1.proj_out.bias']
converted['diffusion']['unet.encoders.3.0.weight'] = original_model['model.diffusion_model.input_blocks.3.0.op.weight']
converted['diffusion']['unet.encoders.3.0.bias'] = original_model['model.diffusion_model.input_blocks.3.0.op.bias']
converted['diffusion']['unet.encoders.4.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.input_blocks.4.0.in_layers.0.weight']
converted['diffusion']['unet.encoders.4.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.input_blocks.4.0.in_layers.0.bias']
converted['diffusion']['unet.encoders.4.0.conv_feature.weight'] = original_model['model.diffusion_model.input_blocks.4.0.in_layers.2.weight']
converted['diffusion']['unet.encoders.4.0.conv_feature.bias'] = original_model['model.diffusion_model.input_blocks.4.0.in_layers.2.bias']
converted['diffusion']['unet.encoders.4.0.linear_time.weight'] = original_model['model.diffusion_model.input_blocks.4.0.emb_layers.1.weight']
converted['diffusion']['unet.encoders.4.0.linear_time.bias'] = original_model['model.diffusion_model.input_blocks.4.0.emb_layers.1.bias']
converted['diffusion']['unet.encoders.4.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.input_blocks.4.0.out_layers.0.weight']
converted['diffusion']['unet.encoders.4.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.input_blocks.4.0.out_layers.0.bias']
converted['diffusion']['unet.encoders.4.0.conv_merged.weight'] = original_model['model.diffusion_model.input_blocks.4.0.out_layers.3.weight']
converted['diffusion']['unet.encoders.4.0.conv_merged.bias'] = original_model['model.diffusion_model.input_blocks.4.0.out_layers.3.bias']
converted['diffusion']['unet.encoders.4.0.residual_layer.weight'] = original_model['model.diffusion_model.input_blocks.4.0.skip_connection.weight']
converted['diffusion']['unet.encoders.4.0.residual_layer.bias'] = original_model['model.diffusion_model.input_blocks.4.0.skip_connection.bias']
converted['diffusion']['unet.encoders.4.1.groupnorm.weight'] = original_model['model.diffusion_model.input_blocks.4.1.norm.weight']
converted['diffusion']['unet.encoders.4.1.groupnorm.bias'] = original_model['model.diffusion_model.input_blocks.4.1.norm.bias']
converted['diffusion']['unet.encoders.4.1.conv_input.weight'] = original_model['model.diffusion_model.input_blocks.4.1.proj_in.weight']
converted['diffusion']['unet.encoders.4.1.conv_input.bias'] = original_model['model.diffusion_model.input_blocks.4.1.proj_in.bias']
converted['diffusion']['unet.encoders.4.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.encoders.4.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.encoders.4.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.encoders.4.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.encoders.4.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.encoders.4.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.encoders.4.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.encoders.4.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.encoders.4.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.encoders.4.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.encoders.4.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.encoders.4.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.encoders.4.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.encoders.4.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.encoders.4.1.layernorm_2.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.encoders.4.1.layernorm_3.weight'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.encoders.4.1.layernorm_3.bias'] = original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.encoders.4.1.conv_output.weight'] = original_model['model.diffusion_model.input_blocks.4.1.proj_out.weight']
converted['diffusion']['unet.encoders.4.1.conv_output.bias'] = original_model['model.diffusion_model.input_blocks.4.1.proj_out.bias']
converted['diffusion']['unet.encoders.5.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.input_blocks.5.0.in_layers.0.weight']
converted['diffusion']['unet.encoders.5.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.input_blocks.5.0.in_layers.0.bias']
converted['diffusion']['unet.encoders.5.0.conv_feature.weight'] = original_model['model.diffusion_model.input_blocks.5.0.in_layers.2.weight']
converted['diffusion']['unet.encoders.5.0.conv_feature.bias'] = original_model['model.diffusion_model.input_blocks.5.0.in_layers.2.bias']
converted['diffusion']['unet.encoders.5.0.linear_time.weight'] = original_model['model.diffusion_model.input_blocks.5.0.emb_layers.1.weight']
converted['diffusion']['unet.encoders.5.0.linear_time.bias'] = original_model['model.diffusion_model.input_blocks.5.0.emb_layers.1.bias']
converted['diffusion']['unet.encoders.5.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.input_blocks.5.0.out_layers.0.weight']
converted['diffusion']['unet.encoders.5.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.input_blocks.5.0.out_layers.0.bias']
converted['diffusion']['unet.encoders.5.0.conv_merged.weight'] = original_model['model.diffusion_model.input_blocks.5.0.out_layers.3.weight']
converted['diffusion']['unet.encoders.5.0.conv_merged.bias'] = original_model['model.diffusion_model.input_blocks.5.0.out_layers.3.bias']
converted['diffusion']['unet.encoders.5.1.groupnorm.weight'] = original_model['model.diffusion_model.input_blocks.5.1.norm.weight']
converted['diffusion']['unet.encoders.5.1.groupnorm.bias'] = original_model['model.diffusion_model.input_blocks.5.1.norm.bias']
converted['diffusion']['unet.encoders.5.1.conv_input.weight'] = original_model['model.diffusion_model.input_blocks.5.1.proj_in.weight']
converted['diffusion']['unet.encoders.5.1.conv_input.bias'] = original_model['model.diffusion_model.input_blocks.5.1.proj_in.bias']
converted['diffusion']['unet.encoders.5.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.encoders.5.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.encoders.5.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.encoders.5.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.encoders.5.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.encoders.5.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.encoders.5.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.encoders.5.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.encoders.5.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.encoders.5.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.encoders.5.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.encoders.5.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.encoders.5.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.encoders.5.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.encoders.5.1.layernorm_2.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.encoders.5.1.layernorm_3.weight'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.encoders.5.1.layernorm_3.bias'] = original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.encoders.5.1.conv_output.weight'] = original_model['model.diffusion_model.input_blocks.5.1.proj_out.weight']
converted['diffusion']['unet.encoders.5.1.conv_output.bias'] = original_model['model.diffusion_model.input_blocks.5.1.proj_out.bias']
converted['diffusion']['unet.encoders.6.0.weight'] = original_model['model.diffusion_model.input_blocks.6.0.op.weight']
converted['diffusion']['unet.encoders.6.0.bias'] = original_model['model.diffusion_model.input_blocks.6.0.op.bias']
converted['diffusion']['unet.encoders.7.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.input_blocks.7.0.in_layers.0.weight']
converted['diffusion']['unet.encoders.7.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.input_blocks.7.0.in_layers.0.bias']
converted['diffusion']['unet.encoders.7.0.conv_feature.weight'] = original_model['model.diffusion_model.input_blocks.7.0.in_layers.2.weight']
converted['diffusion']['unet.encoders.7.0.conv_feature.bias'] = original_model['model.diffusion_model.input_blocks.7.0.in_layers.2.bias']
converted['diffusion']['unet.encoders.7.0.linear_time.weight'] = original_model['model.diffusion_model.input_blocks.7.0.emb_layers.1.weight']
converted['diffusion']['unet.encoders.7.0.linear_time.bias'] = original_model['model.diffusion_model.input_blocks.7.0.emb_layers.1.bias']
converted['diffusion']['unet.encoders.7.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.input_blocks.7.0.out_layers.0.weight']
converted['diffusion']['unet.encoders.7.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.input_blocks.7.0.out_layers.0.bias']
converted['diffusion']['unet.encoders.7.0.conv_merged.weight'] = original_model['model.diffusion_model.input_blocks.7.0.out_layers.3.weight']
converted['diffusion']['unet.encoders.7.0.conv_merged.bias'] = original_model['model.diffusion_model.input_blocks.7.0.out_layers.3.bias']
converted['diffusion']['unet.encoders.7.0.residual_layer.weight'] = original_model['model.diffusion_model.input_blocks.7.0.skip_connection.weight']
converted['diffusion']['unet.encoders.7.0.residual_layer.bias'] = original_model['model.diffusion_model.input_blocks.7.0.skip_connection.bias']
converted['diffusion']['unet.encoders.7.1.groupnorm.weight'] = original_model['model.diffusion_model.input_blocks.7.1.norm.weight']
converted['diffusion']['unet.encoders.7.1.groupnorm.bias'] = original_model['model.diffusion_model.input_blocks.7.1.norm.bias']
converted['diffusion']['unet.encoders.7.1.conv_input.weight'] = original_model['model.diffusion_model.input_blocks.7.1.proj_in.weight']
converted['diffusion']['unet.encoders.7.1.conv_input.bias'] = original_model['model.diffusion_model.input_blocks.7.1.proj_in.bias']
converted['diffusion']['unet.encoders.7.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.encoders.7.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.encoders.7.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.encoders.7.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.encoders.7.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.encoders.7.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.encoders.7.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.encoders.7.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.encoders.7.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.encoders.7.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.encoders.7.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.encoders.7.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.encoders.7.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.encoders.7.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.encoders.7.1.layernorm_2.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.encoders.7.1.layernorm_3.weight'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.encoders.7.1.layernorm_3.bias'] = original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.encoders.7.1.conv_output.weight'] = original_model['model.diffusion_model.input_blocks.7.1.proj_out.weight']
converted['diffusion']['unet.encoders.7.1.conv_output.bias'] = original_model['model.diffusion_model.input_blocks.7.1.proj_out.bias']
converted['diffusion']['unet.encoders.8.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.input_blocks.8.0.in_layers.0.weight']
converted['diffusion']['unet.encoders.8.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.input_blocks.8.0.in_layers.0.bias']
converted['diffusion']['unet.encoders.8.0.conv_feature.weight'] = original_model['model.diffusion_model.input_blocks.8.0.in_layers.2.weight']
converted['diffusion']['unet.encoders.8.0.conv_feature.bias'] = original_model['model.diffusion_model.input_blocks.8.0.in_layers.2.bias']
converted['diffusion']['unet.encoders.8.0.linear_time.weight'] = original_model['model.diffusion_model.input_blocks.8.0.emb_layers.1.weight']
converted['diffusion']['unet.encoders.8.0.linear_time.bias'] = original_model['model.diffusion_model.input_blocks.8.0.emb_layers.1.bias']
converted['diffusion']['unet.encoders.8.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.input_blocks.8.0.out_layers.0.weight']
converted['diffusion']['unet.encoders.8.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.input_blocks.8.0.out_layers.0.bias']
converted['diffusion']['unet.encoders.8.0.conv_merged.weight'] = original_model['model.diffusion_model.input_blocks.8.0.out_layers.3.weight']
converted['diffusion']['unet.encoders.8.0.conv_merged.bias'] = original_model['model.diffusion_model.input_blocks.8.0.out_layers.3.bias']
converted['diffusion']['unet.encoders.8.1.groupnorm.weight'] = original_model['model.diffusion_model.input_blocks.8.1.norm.weight']
converted['diffusion']['unet.encoders.8.1.groupnorm.bias'] = original_model['model.diffusion_model.input_blocks.8.1.norm.bias']
converted['diffusion']['unet.encoders.8.1.conv_input.weight'] = original_model['model.diffusion_model.input_blocks.8.1.proj_in.weight']
converted['diffusion']['unet.encoders.8.1.conv_input.bias'] = original_model['model.diffusion_model.input_blocks.8.1.proj_in.bias']
converted['diffusion']['unet.encoders.8.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.encoders.8.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.encoders.8.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.encoders.8.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.encoders.8.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.encoders.8.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.encoders.8.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.encoders.8.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.encoders.8.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.encoders.8.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.encoders.8.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.encoders.8.1.layernorm_1.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.encoders.8.1.layernorm_1.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.encoders.8.1.layernorm_2.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.encoders.8.1.layernorm_2.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.encoders.8.1.layernorm_3.weight'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.encoders.8.1.layernorm_3.bias'] = original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.encoders.8.1.conv_output.weight'] = original_model['model.diffusion_model.input_blocks.8.1.proj_out.weight']
converted['diffusion']['unet.encoders.8.1.conv_output.bias'] = original_model['model.diffusion_model.input_blocks.8.1.proj_out.bias']
converted['diffusion']['unet.encoders.9.0.weight'] = original_model['model.diffusion_model.input_blocks.9.0.op.weight']
converted['diffusion']['unet.encoders.9.0.bias'] = original_model['model.diffusion_model.input_blocks.9.0.op.bias']
converted['diffusion']['unet.encoders.10.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.input_blocks.10.0.in_layers.0.weight']
converted['diffusion']['unet.encoders.10.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.input_blocks.10.0.in_layers.0.bias']
converted['diffusion']['unet.encoders.10.0.conv_feature.weight'] = original_model['model.diffusion_model.input_blocks.10.0.in_layers.2.weight']
converted['diffusion']['unet.encoders.10.0.conv_feature.bias'] = original_model['model.diffusion_model.input_blocks.10.0.in_layers.2.bias']
converted['diffusion']['unet.encoders.10.0.linear_time.weight'] = original_model['model.diffusion_model.input_blocks.10.0.emb_layers.1.weight']
converted['diffusion']['unet.encoders.10.0.linear_time.bias'] = original_model['model.diffusion_model.input_blocks.10.0.emb_layers.1.bias']
converted['diffusion']['unet.encoders.10.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.input_blocks.10.0.out_layers.0.weight']
converted['diffusion']['unet.encoders.10.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.input_blocks.10.0.out_layers.0.bias']
converted['diffusion']['unet.encoders.10.0.conv_merged.weight'] = original_model['model.diffusion_model.input_blocks.10.0.out_layers.3.weight']
converted['diffusion']['unet.encoders.10.0.conv_merged.bias'] = original_model['model.diffusion_model.input_blocks.10.0.out_layers.3.bias']
converted['diffusion']['unet.encoders.11.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.input_blocks.11.0.in_layers.0.weight']
converted['diffusion']['unet.encoders.11.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.input_blocks.11.0.in_layers.0.bias']
converted['diffusion']['unet.encoders.11.0.conv_feature.weight'] = original_model['model.diffusion_model.input_blocks.11.0.in_layers.2.weight']
converted['diffusion']['unet.encoders.11.0.conv_feature.bias'] = original_model['model.diffusion_model.input_blocks.11.0.in_layers.2.bias']
converted['diffusion']['unet.encoders.11.0.linear_time.weight'] = original_model['model.diffusion_model.input_blocks.11.0.emb_layers.1.weight']
converted['diffusion']['unet.encoders.11.0.linear_time.bias'] = original_model['model.diffusion_model.input_blocks.11.0.emb_layers.1.bias']
converted['diffusion']['unet.encoders.11.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.input_blocks.11.0.out_layers.0.weight']
converted['diffusion']['unet.encoders.11.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.input_blocks.11.0.out_layers.0.bias']
converted['diffusion']['unet.encoders.11.0.conv_merged.weight'] = original_model['model.diffusion_model.input_blocks.11.0.out_layers.3.weight']
converted['diffusion']['unet.encoders.11.0.conv_merged.bias'] = original_model['model.diffusion_model.input_blocks.11.0.out_layers.3.bias']
converted['diffusion']['unet.bottleneck.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.middle_block.0.in_layers.0.weight']
converted['diffusion']['unet.bottleneck.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.middle_block.0.in_layers.0.bias']
converted['diffusion']['unet.bottleneck.0.conv_feature.weight'] = original_model['model.diffusion_model.middle_block.0.in_layers.2.weight']
converted['diffusion']['unet.bottleneck.0.conv_feature.bias'] = original_model['model.diffusion_model.middle_block.0.in_layers.2.bias']
converted['diffusion']['unet.bottleneck.0.linear_time.weight'] = original_model['model.diffusion_model.middle_block.0.emb_layers.1.weight']
converted['diffusion']['unet.bottleneck.0.linear_time.bias'] = original_model['model.diffusion_model.middle_block.0.emb_layers.1.bias']
converted['diffusion']['unet.bottleneck.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.middle_block.0.out_layers.0.weight']
converted['diffusion']['unet.bottleneck.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.middle_block.0.out_layers.0.bias']
converted['diffusion']['unet.bottleneck.0.conv_merged.weight'] = original_model['model.diffusion_model.middle_block.0.out_layers.3.weight']
converted['diffusion']['unet.bottleneck.0.conv_merged.bias'] = original_model['model.diffusion_model.middle_block.0.out_layers.3.bias']
converted['diffusion']['unet.bottleneck.1.groupnorm.weight'] = original_model['model.diffusion_model.middle_block.1.norm.weight']
converted['diffusion']['unet.bottleneck.1.groupnorm.bias'] = original_model['model.diffusion_model.middle_block.1.norm.bias']
converted['diffusion']['unet.bottleneck.1.conv_input.weight'] = original_model['model.diffusion_model.middle_block.1.proj_in.weight']
converted['diffusion']['unet.bottleneck.1.conv_input.bias'] = original_model['model.diffusion_model.middle_block.1.proj_in.bias']
converted['diffusion']['unet.bottleneck.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.bottleneck.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.bottleneck.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.bottleneck.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.bottleneck.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.bottleneck.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.bottleneck.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.bottleneck.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.bottleneck.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.bottleneck.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.bottleneck.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.bottleneck.1.layernorm_1.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.bottleneck.1.layernorm_1.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.bottleneck.1.layernorm_2.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.bottleneck.1.layernorm_2.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.bottleneck.1.layernorm_3.weight'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.bottleneck.1.layernorm_3.bias'] = original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.bottleneck.1.conv_output.weight'] = original_model['model.diffusion_model.middle_block.1.proj_out.weight']
converted['diffusion']['unet.bottleneck.1.conv_output.bias'] = original_model['model.diffusion_model.middle_block.1.proj_out.bias']
converted['diffusion']['unet.bottleneck.2.groupnorm_feature.weight'] = original_model['model.diffusion_model.middle_block.2.in_layers.0.weight']
converted['diffusion']['unet.bottleneck.2.groupnorm_feature.bias'] = original_model['model.diffusion_model.middle_block.2.in_layers.0.bias']
converted['diffusion']['unet.bottleneck.2.conv_feature.weight'] = original_model['model.diffusion_model.middle_block.2.in_layers.2.weight']
converted['diffusion']['unet.bottleneck.2.conv_feature.bias'] = original_model['model.diffusion_model.middle_block.2.in_layers.2.bias']
converted['diffusion']['unet.bottleneck.2.linear_time.weight'] = original_model['model.diffusion_model.middle_block.2.emb_layers.1.weight']
converted['diffusion']['unet.bottleneck.2.linear_time.bias'] = original_model['model.diffusion_model.middle_block.2.emb_layers.1.bias']
converted['diffusion']['unet.bottleneck.2.groupnorm_merged.weight'] = original_model['model.diffusion_model.middle_block.2.out_layers.0.weight']
converted['diffusion']['unet.bottleneck.2.groupnorm_merged.bias'] = original_model['model.diffusion_model.middle_block.2.out_layers.0.bias']
converted['diffusion']['unet.bottleneck.2.conv_merged.weight'] = original_model['model.diffusion_model.middle_block.2.out_layers.3.weight']
converted['diffusion']['unet.bottleneck.2.conv_merged.bias'] = original_model['model.diffusion_model.middle_block.2.out_layers.3.bias']
converted['diffusion']['unet.decoders.0.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.0.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.0.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.0.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.0.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.0.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.0.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.0.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.0.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.0.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.0.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.0.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.0.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.0.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.0.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.0.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.0.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.0.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.0.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.0.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.0.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.0.0.skip_connection.weight']
converted['diffusion']['unet.decoders.0.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.0.0.skip_connection.bias']
converted['diffusion']['unet.decoders.1.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.1.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.1.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.1.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.1.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.1.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.1.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.1.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.1.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.1.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.1.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.1.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.1.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.1.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.1.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.1.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.1.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.1.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.1.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.1.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.1.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.1.0.skip_connection.weight']
converted['diffusion']['unet.decoders.1.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.1.0.skip_connection.bias']
converted['diffusion']['unet.decoders.2.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.2.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.2.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.2.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.2.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.2.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.2.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.2.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.2.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.2.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.2.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.2.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.2.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.2.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.2.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.2.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.2.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.2.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.2.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.2.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.2.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.2.0.skip_connection.weight']
converted['diffusion']['unet.decoders.2.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.2.0.skip_connection.bias']
converted['diffusion']['unet.decoders.2.1.conv.weight'] = original_model['model.diffusion_model.output_blocks.2.1.conv.weight']
converted['diffusion']['unet.decoders.2.1.conv.bias'] = original_model['model.diffusion_model.output_blocks.2.1.conv.bias']
converted['diffusion']['unet.decoders.3.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.3.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.3.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.3.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.3.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.3.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.3.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.3.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.3.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.3.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.3.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.3.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.3.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.3.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.3.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.3.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.3.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.3.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.3.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.3.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.3.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.3.0.skip_connection.weight']
converted['diffusion']['unet.decoders.3.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.3.0.skip_connection.bias']
converted['diffusion']['unet.decoders.3.1.groupnorm.weight'] = original_model['model.diffusion_model.output_blocks.3.1.norm.weight']
converted['diffusion']['unet.decoders.3.1.groupnorm.bias'] = original_model['model.diffusion_model.output_blocks.3.1.norm.bias']
converted['diffusion']['unet.decoders.3.1.conv_input.weight'] = original_model['model.diffusion_model.output_blocks.3.1.proj_in.weight']
converted['diffusion']['unet.decoders.3.1.conv_input.bias'] = original_model['model.diffusion_model.output_blocks.3.1.proj_in.bias']
converted['diffusion']['unet.decoders.3.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.decoders.3.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.decoders.3.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.decoders.3.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.decoders.3.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.decoders.3.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.decoders.3.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.decoders.3.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.decoders.3.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.decoders.3.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.decoders.3.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.decoders.3.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.decoders.3.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.decoders.3.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.decoders.3.1.layernorm_2.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.decoders.3.1.layernorm_3.weight'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.decoders.3.1.layernorm_3.bias'] = original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.decoders.3.1.conv_output.weight'] = original_model['model.diffusion_model.output_blocks.3.1.proj_out.weight']
converted['diffusion']['unet.decoders.3.1.conv_output.bias'] = original_model['model.diffusion_model.output_blocks.3.1.proj_out.bias']
converted['diffusion']['unet.decoders.4.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.4.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.4.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.4.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.4.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.4.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.4.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.4.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.4.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.4.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.4.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.4.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.4.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.4.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.4.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.4.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.4.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.4.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.4.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.4.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.4.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.4.0.skip_connection.weight']
converted['diffusion']['unet.decoders.4.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.4.0.skip_connection.bias']
converted['diffusion']['unet.decoders.4.1.groupnorm.weight'] = original_model['model.diffusion_model.output_blocks.4.1.norm.weight']
converted['diffusion']['unet.decoders.4.1.groupnorm.bias'] = original_model['model.diffusion_model.output_blocks.4.1.norm.bias']
converted['diffusion']['unet.decoders.4.1.conv_input.weight'] = original_model['model.diffusion_model.output_blocks.4.1.proj_in.weight']
converted['diffusion']['unet.decoders.4.1.conv_input.bias'] = original_model['model.diffusion_model.output_blocks.4.1.proj_in.bias']
converted['diffusion']['unet.decoders.4.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.decoders.4.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.decoders.4.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.decoders.4.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.decoders.4.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.decoders.4.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.decoders.4.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.decoders.4.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.decoders.4.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.decoders.4.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.decoders.4.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.decoders.4.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.decoders.4.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.decoders.4.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.decoders.4.1.layernorm_2.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.decoders.4.1.layernorm_3.weight'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.decoders.4.1.layernorm_3.bias'] = original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.decoders.4.1.conv_output.weight'] = original_model['model.diffusion_model.output_blocks.4.1.proj_out.weight']
converted['diffusion']['unet.decoders.4.1.conv_output.bias'] = original_model['model.diffusion_model.output_blocks.4.1.proj_out.bias']
converted['diffusion']['unet.decoders.5.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.5.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.5.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.5.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.5.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.5.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.5.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.5.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.5.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.5.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.5.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.5.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.5.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.5.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.5.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.5.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.5.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.5.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.5.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.5.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.5.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.5.0.skip_connection.weight']
converted['diffusion']['unet.decoders.5.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.5.0.skip_connection.bias']
converted['diffusion']['unet.decoders.5.1.groupnorm.weight'] = original_model['model.diffusion_model.output_blocks.5.1.norm.weight']
converted['diffusion']['unet.decoders.5.1.groupnorm.bias'] = original_model['model.diffusion_model.output_blocks.5.1.norm.bias']
converted['diffusion']['unet.decoders.5.1.conv_input.weight'] = original_model['model.diffusion_model.output_blocks.5.1.proj_in.weight']
converted['diffusion']['unet.decoders.5.1.conv_input.bias'] = original_model['model.diffusion_model.output_blocks.5.1.proj_in.bias']
converted['diffusion']['unet.decoders.5.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.decoders.5.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.decoders.5.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.decoders.5.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.decoders.5.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.decoders.5.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.decoders.5.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.decoders.5.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.decoders.5.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.decoders.5.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.decoders.5.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.decoders.5.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.decoders.5.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.decoders.5.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.decoders.5.1.layernorm_2.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.decoders.5.1.layernorm_3.weight'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.decoders.5.1.layernorm_3.bias'] = original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.decoders.5.1.conv_output.weight'] = original_model['model.diffusion_model.output_blocks.5.1.proj_out.weight']
converted['diffusion']['unet.decoders.5.1.conv_output.bias'] = original_model['model.diffusion_model.output_blocks.5.1.proj_out.bias']
converted['diffusion']['unet.decoders.5.2.conv.weight'] = original_model['model.diffusion_model.output_blocks.5.2.conv.weight']
converted['diffusion']['unet.decoders.5.2.conv.bias'] = original_model['model.diffusion_model.output_blocks.5.2.conv.bias']
converted['diffusion']['unet.decoders.6.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.6.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.6.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.6.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.6.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.6.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.6.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.6.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.6.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.6.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.6.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.6.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.6.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.6.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.6.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.6.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.6.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.6.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.6.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.6.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.6.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.6.0.skip_connection.weight']
converted['diffusion']['unet.decoders.6.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.6.0.skip_connection.bias']
converted['diffusion']['unet.decoders.6.1.groupnorm.weight'] = original_model['model.diffusion_model.output_blocks.6.1.norm.weight']
converted['diffusion']['unet.decoders.6.1.groupnorm.bias'] = original_model['model.diffusion_model.output_blocks.6.1.norm.bias']
converted['diffusion']['unet.decoders.6.1.conv_input.weight'] = original_model['model.diffusion_model.output_blocks.6.1.proj_in.weight']
converted['diffusion']['unet.decoders.6.1.conv_input.bias'] = original_model['model.diffusion_model.output_blocks.6.1.proj_in.bias']
converted['diffusion']['unet.decoders.6.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.decoders.6.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.decoders.6.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.decoders.6.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.decoders.6.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.decoders.6.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.decoders.6.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.decoders.6.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.decoders.6.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.decoders.6.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.decoders.6.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.decoders.6.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.decoders.6.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.decoders.6.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.decoders.6.1.layernorm_2.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.decoders.6.1.layernorm_3.weight'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.decoders.6.1.layernorm_3.bias'] = original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.decoders.6.1.conv_output.weight'] = original_model['model.diffusion_model.output_blocks.6.1.proj_out.weight']
converted['diffusion']['unet.decoders.6.1.conv_output.bias'] = original_model['model.diffusion_model.output_blocks.6.1.proj_out.bias']
converted['diffusion']['unet.decoders.7.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.7.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.7.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.7.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.7.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.7.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.7.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.7.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.7.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.7.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.7.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.7.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.7.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.7.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.7.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.7.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.7.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.7.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.7.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.7.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.7.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.7.0.skip_connection.weight']
converted['diffusion']['unet.decoders.7.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.7.0.skip_connection.bias']
converted['diffusion']['unet.decoders.7.1.groupnorm.weight'] = original_model['model.diffusion_model.output_blocks.7.1.norm.weight']
converted['diffusion']['unet.decoders.7.1.groupnorm.bias'] = original_model['model.diffusion_model.output_blocks.7.1.norm.bias']
converted['diffusion']['unet.decoders.7.1.conv_input.weight'] = original_model['model.diffusion_model.output_blocks.7.1.proj_in.weight']
converted['diffusion']['unet.decoders.7.1.conv_input.bias'] = original_model['model.diffusion_model.output_blocks.7.1.proj_in.bias']
converted['diffusion']['unet.decoders.7.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.decoders.7.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.decoders.7.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.decoders.7.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.decoders.7.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.decoders.7.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.decoders.7.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.decoders.7.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.decoders.7.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.decoders.7.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.decoders.7.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.decoders.7.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.decoders.7.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.decoders.7.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.decoders.7.1.layernorm_2.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.decoders.7.1.layernorm_3.weight'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.decoders.7.1.layernorm_3.bias'] = original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.decoders.7.1.conv_output.weight'] = original_model['model.diffusion_model.output_blocks.7.1.proj_out.weight']
converted['diffusion']['unet.decoders.7.1.conv_output.bias'] = original_model['model.diffusion_model.output_blocks.7.1.proj_out.bias']
converted['diffusion']['unet.decoders.8.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.8.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.8.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.8.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.8.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.8.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.8.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.8.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.8.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.8.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.8.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.8.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.8.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.8.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.8.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.8.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.8.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.8.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.8.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.8.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.8.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.8.0.skip_connection.weight']
converted['diffusion']['unet.decoders.8.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.8.0.skip_connection.bias']
converted['diffusion']['unet.decoders.8.1.groupnorm.weight'] = original_model['model.diffusion_model.output_blocks.8.1.norm.weight']
converted['diffusion']['unet.decoders.8.1.groupnorm.bias'] = original_model['model.diffusion_model.output_blocks.8.1.norm.bias']
converted['diffusion']['unet.decoders.8.1.conv_input.weight'] = original_model['model.diffusion_model.output_blocks.8.1.proj_in.weight']
converted['diffusion']['unet.decoders.8.1.conv_input.bias'] = original_model['model.diffusion_model.output_blocks.8.1.proj_in.bias']
converted['diffusion']['unet.decoders.8.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.decoders.8.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.decoders.8.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.decoders.8.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.decoders.8.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.decoders.8.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.decoders.8.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.decoders.8.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.decoders.8.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.decoders.8.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.decoders.8.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.decoders.8.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.decoders.8.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.decoders.8.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.decoders.8.1.layernorm_2.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.decoders.8.1.layernorm_3.weight'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.decoders.8.1.layernorm_3.bias'] = original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.decoders.8.1.conv_output.weight'] = original_model['model.diffusion_model.output_blocks.8.1.proj_out.weight']
converted['diffusion']['unet.decoders.8.1.conv_output.bias'] = original_model['model.diffusion_model.output_blocks.8.1.proj_out.bias']
converted['diffusion']['unet.decoders.8.2.conv.weight'] = original_model['model.diffusion_model.output_blocks.8.2.conv.weight']
converted['diffusion']['unet.decoders.8.2.conv.bias'] = original_model['model.diffusion_model.output_blocks.8.2.conv.bias']
converted['diffusion']['unet.decoders.9.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.9.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.9.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.9.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.9.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.9.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.9.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.9.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.9.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.9.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.9.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.9.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.9.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.9.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.9.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.9.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.9.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.9.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.9.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.9.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.9.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.9.0.skip_connection.weight']
converted['diffusion']['unet.decoders.9.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.9.0.skip_connection.bias']
converted['diffusion']['unet.decoders.9.1.groupnorm.weight'] = original_model['model.diffusion_model.output_blocks.9.1.norm.weight']
converted['diffusion']['unet.decoders.9.1.groupnorm.bias'] = original_model['model.diffusion_model.output_blocks.9.1.norm.bias']
converted['diffusion']['unet.decoders.9.1.conv_input.weight'] = original_model['model.diffusion_model.output_blocks.9.1.proj_in.weight']
converted['diffusion']['unet.decoders.9.1.conv_input.bias'] = original_model['model.diffusion_model.output_blocks.9.1.proj_in.bias']
converted['diffusion']['unet.decoders.9.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.decoders.9.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.decoders.9.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.decoders.9.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.decoders.9.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.decoders.9.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.decoders.9.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.decoders.9.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.decoders.9.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.decoders.9.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.decoders.9.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.decoders.9.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.decoders.9.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.decoders.9.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.decoders.9.1.layernorm_2.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.decoders.9.1.layernorm_3.weight'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.decoders.9.1.layernorm_3.bias'] = original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.decoders.9.1.conv_output.weight'] = original_model['model.diffusion_model.output_blocks.9.1.proj_out.weight']
converted['diffusion']['unet.decoders.9.1.conv_output.bias'] = original_model['model.diffusion_model.output_blocks.9.1.proj_out.bias']
converted['diffusion']['unet.decoders.10.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.10.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.10.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.10.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.10.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.10.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.10.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.10.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.10.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.10.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.10.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.10.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.10.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.10.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.10.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.10.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.10.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.10.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.10.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.10.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.10.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.10.0.skip_connection.weight']
converted['diffusion']['unet.decoders.10.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.10.0.skip_connection.bias']
converted['diffusion']['unet.decoders.10.1.groupnorm.weight'] = original_model['model.diffusion_model.output_blocks.10.1.norm.weight']
converted['diffusion']['unet.decoders.10.1.groupnorm.bias'] = original_model['model.diffusion_model.output_blocks.10.1.norm.bias']
converted['diffusion']['unet.decoders.10.1.conv_input.weight'] = original_model['model.diffusion_model.output_blocks.10.1.proj_in.weight']
converted['diffusion']['unet.decoders.10.1.conv_input.bias'] = original_model['model.diffusion_model.output_blocks.10.1.proj_in.bias']
converted['diffusion']['unet.decoders.10.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.decoders.10.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.decoders.10.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.decoders.10.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.decoders.10.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.decoders.10.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.decoders.10.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.decoders.10.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.decoders.10.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.decoders.10.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.decoders.10.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.decoders.10.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.decoders.10.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.decoders.10.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.decoders.10.1.layernorm_2.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.decoders.10.1.layernorm_3.weight'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.decoders.10.1.layernorm_3.bias'] = original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.decoders.10.1.conv_output.weight'] = original_model['model.diffusion_model.output_blocks.10.1.proj_out.weight']
converted['diffusion']['unet.decoders.10.1.conv_output.bias'] = original_model['model.diffusion_model.output_blocks.10.1.proj_out.bias']
converted['diffusion']['unet.decoders.11.0.groupnorm_feature.weight'] = original_model['model.diffusion_model.output_blocks.11.0.in_layers.0.weight']
converted['diffusion']['unet.decoders.11.0.groupnorm_feature.bias'] = original_model['model.diffusion_model.output_blocks.11.0.in_layers.0.bias']
converted['diffusion']['unet.decoders.11.0.conv_feature.weight'] = original_model['model.diffusion_model.output_blocks.11.0.in_layers.2.weight']
converted['diffusion']['unet.decoders.11.0.conv_feature.bias'] = original_model['model.diffusion_model.output_blocks.11.0.in_layers.2.bias']
converted['diffusion']['unet.decoders.11.0.linear_time.weight'] = original_model['model.diffusion_model.output_blocks.11.0.emb_layers.1.weight']
converted['diffusion']['unet.decoders.11.0.linear_time.bias'] = original_model['model.diffusion_model.output_blocks.11.0.emb_layers.1.bias']
converted['diffusion']['unet.decoders.11.0.groupnorm_merged.weight'] = original_model['model.diffusion_model.output_blocks.11.0.out_layers.0.weight']
converted['diffusion']['unet.decoders.11.0.groupnorm_merged.bias'] = original_model['model.diffusion_model.output_blocks.11.0.out_layers.0.bias']
converted['diffusion']['unet.decoders.11.0.conv_merged.weight'] = original_model['model.diffusion_model.output_blocks.11.0.out_layers.3.weight']
converted['diffusion']['unet.decoders.11.0.conv_merged.bias'] = original_model['model.diffusion_model.output_blocks.11.0.out_layers.3.bias']
converted['diffusion']['unet.decoders.11.0.residual_layer.weight'] = original_model['model.diffusion_model.output_blocks.11.0.skip_connection.weight']
converted['diffusion']['unet.decoders.11.0.residual_layer.bias'] = original_model['model.diffusion_model.output_blocks.11.0.skip_connection.bias']
converted['diffusion']['unet.decoders.11.1.groupnorm.weight'] = original_model['model.diffusion_model.output_blocks.11.1.norm.weight']
converted['diffusion']['unet.decoders.11.1.groupnorm.bias'] = original_model['model.diffusion_model.output_blocks.11.1.norm.bias']
converted['diffusion']['unet.decoders.11.1.conv_input.weight'] = original_model['model.diffusion_model.output_blocks.11.1.proj_in.weight']
converted['diffusion']['unet.decoders.11.1.conv_input.bias'] = original_model['model.diffusion_model.output_blocks.11.1.proj_in.bias']
converted['diffusion']['unet.decoders.11.1.attention_1.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.weight']
converted['diffusion']['unet.decoders.11.1.attention_1.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.bias']
converted['diffusion']['unet.decoders.11.1.linear_geglu_1.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.weight']
converted['diffusion']['unet.decoders.11.1.linear_geglu_1.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.bias']
converted['diffusion']['unet.decoders.11.1.linear_geglu_2.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.weight']
converted['diffusion']['unet.decoders.11.1.linear_geglu_2.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.bias']
converted['diffusion']['unet.decoders.11.1.attention_2.q_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q.weight']
converted['diffusion']['unet.decoders.11.1.attention_2.k_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k.weight']
converted['diffusion']['unet.decoders.11.1.attention_2.v_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v.weight']
converted['diffusion']['unet.decoders.11.1.attention_2.out_proj.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.weight']
converted['diffusion']['unet.decoders.11.1.attention_2.out_proj.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.bias']
converted['diffusion']['unet.decoders.11.1.layernorm_1.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.weight']
converted['diffusion']['unet.decoders.11.1.layernorm_1.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias']
converted['diffusion']['unet.decoders.11.1.layernorm_2.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.weight']
converted['diffusion']['unet.decoders.11.1.layernorm_2.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.bias']
converted['diffusion']['unet.decoders.11.1.layernorm_3.weight'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.weight']
converted['diffusion']['unet.decoders.11.1.layernorm_3.bias'] = original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.bias']
converted['diffusion']['unet.decoders.11.1.conv_output.weight'] = original_model['model.diffusion_model.output_blocks.11.1.proj_out.weight']
converted['diffusion']['unet.decoders.11.1.conv_output.bias'] = original_model['model.diffusion_model.output_blocks.11.1.proj_out.bias']
converted['diffusion']['final.groupnorm.weight'] = original_model['model.diffusion_model.out.0.weight']
converted['diffusion']['final.groupnorm.bias'] = original_model['model.diffusion_model.out.0.bias']
converted['diffusion']['final.conv.weight'] = original_model['model.diffusion_model.out.2.weight']
converted['diffusion']['final.conv.bias'] = original_model['model.diffusion_model.out.2.bias']
converted['encoder']['0.weight'] = original_model['first_stage_model.encoder.conv_in.weight']
converted['encoder']['0.bias'] = original_model['first_stage_model.encoder.conv_in.bias']
converted['encoder']['1.groupnorm_1.weight'] = original_model['first_stage_model.encoder.down.0.block.0.norm1.weight']
converted['encoder']['1.groupnorm_1.bias'] = original_model['first_stage_model.encoder.down.0.block.0.norm1.bias']
converted['encoder']['1.conv_1.weight'] = original_model['first_stage_model.encoder.down.0.block.0.conv1.weight']
converted['encoder']['1.conv_1.bias'] = original_model['first_stage_model.encoder.down.0.block.0.conv1.bias']
converted['encoder']['1.groupnorm_2.weight'] = original_model['first_stage_model.encoder.down.0.block.0.norm2.weight']
converted['encoder']['1.groupnorm_2.bias'] = original_model['first_stage_model.encoder.down.0.block.0.norm2.bias']
converted['encoder']['1.conv_2.weight'] = original_model['first_stage_model.encoder.down.0.block.0.conv2.weight']
converted['encoder']['1.conv_2.bias'] = original_model['first_stage_model.encoder.down.0.block.0.conv2.bias']
converted['encoder']['2.groupnorm_1.weight'] = original_model['first_stage_model.encoder.down.0.block.1.norm1.weight']
converted['encoder']['2.groupnorm_1.bias'] = original_model['first_stage_model.encoder.down.0.block.1.norm1.bias']
converted['encoder']['2.conv_1.weight'] = original_model['first_stage_model.encoder.down.0.block.1.conv1.weight']
converted['encoder']['2.conv_1.bias'] = original_model['first_stage_model.encoder.down.0.block.1.conv1.bias']
converted['encoder']['2.groupnorm_2.weight'] = original_model['first_stage_model.encoder.down.0.block.1.norm2.weight']
converted['encoder']['2.groupnorm_2.bias'] = original_model['first_stage_model.encoder.down.0.block.1.norm2.bias']
converted['encoder']['2.conv_2.weight'] = original_model['first_stage_model.encoder.down.0.block.1.conv2.weight']
converted['encoder']['2.conv_2.bias'] = original_model['first_stage_model.encoder.down.0.block.1.conv2.bias']
converted['encoder']['3.weight'] = original_model['first_stage_model.encoder.down.0.downsample.conv.weight']
converted['encoder']['3.bias'] = original_model['first_stage_model.encoder.down.0.downsample.conv.bias']
converted['encoder']['4.groupnorm_1.weight'] = original_model['first_stage_model.encoder.down.1.block.0.norm1.weight']
converted['encoder']['4.groupnorm_1.bias'] = original_model['first_stage_model.encoder.down.1.block.0.norm1.bias']
converted['encoder']['4.conv_1.weight'] = original_model['first_stage_model.encoder.down.1.block.0.conv1.weight']
converted['encoder']['4.conv_1.bias'] = original_model['first_stage_model.encoder.down.1.block.0.conv1.bias']
converted['encoder']['4.groupnorm_2.weight'] = original_model['first_stage_model.encoder.down.1.block.0.norm2.weight']
converted['encoder']['4.groupnorm_2.bias'] = original_model['first_stage_model.encoder.down.1.block.0.norm2.bias']
converted['encoder']['4.conv_2.weight'] = original_model['first_stage_model.encoder.down.1.block.0.conv2.weight']
converted['encoder']['4.conv_2.bias'] = original_model['first_stage_model.encoder.down.1.block.0.conv2.bias']
converted['encoder']['4.residual_layer.weight'] = original_model['first_stage_model.encoder.down.1.block.0.nin_shortcut.weight']
converted['encoder']['4.residual_layer.bias'] = original_model['first_stage_model.encoder.down.1.block.0.nin_shortcut.bias']
converted['encoder']['5.groupnorm_1.weight'] = original_model['first_stage_model.encoder.down.1.block.1.norm1.weight']
converted['encoder']['5.groupnorm_1.bias'] = original_model['first_stage_model.encoder.down.1.block.1.norm1.bias']
converted['encoder']['5.conv_1.weight'] = original_model['first_stage_model.encoder.down.1.block.1.conv1.weight']
converted['encoder']['5.conv_1.bias'] = original_model['first_stage_model.encoder.down.1.block.1.conv1.bias']
converted['encoder']['5.groupnorm_2.weight'] = original_model['first_stage_model.encoder.down.1.block.1.norm2.weight']
converted['encoder']['5.groupnorm_2.bias'] = original_model['first_stage_model.encoder.down.1.block.1.norm2.bias']
converted['encoder']['5.conv_2.weight'] = original_model['first_stage_model.encoder.down.1.block.1.conv2.weight']
converted['encoder']['5.conv_2.bias'] = original_model['first_stage_model.encoder.down.1.block.1.conv2.bias']
converted['encoder']['6.weight'] = original_model['first_stage_model.encoder.down.1.downsample.conv.weight']
converted['encoder']['6.bias'] = original_model['first_stage_model.encoder.down.1.downsample.conv.bias']
converted['encoder']['7.groupnorm_1.weight'] = original_model['first_stage_model.encoder.down.2.block.0.norm1.weight']
converted['encoder']['7.groupnorm_1.bias'] = original_model['first_stage_model.encoder.down.2.block.0.norm1.bias']
converted['encoder']['7.conv_1.weight'] = original_model['first_stage_model.encoder.down.2.block.0.conv1.weight']
converted['encoder']['7.conv_1.bias'] = original_model['first_stage_model.encoder.down.2.block.0.conv1.bias']
converted['encoder']['7.groupnorm_2.weight'] = original_model['first_stage_model.encoder.down.2.block.0.norm2.weight']
converted['encoder']['7.groupnorm_2.bias'] = original_model['first_stage_model.encoder.down.2.block.0.norm2.bias']
converted['encoder']['7.conv_2.weight'] = original_model['first_stage_model.encoder.down.2.block.0.conv2.weight']
converted['encoder']['7.conv_2.bias'] = original_model['first_stage_model.encoder.down.2.block.0.conv2.bias']
converted['encoder']['7.residual_layer.weight'] = original_model['first_stage_model.encoder.down.2.block.0.nin_shortcut.weight']
converted['encoder']['7.residual_layer.bias'] = original_model['first_stage_model.encoder.down.2.block.0.nin_shortcut.bias']
converted['encoder']['8.groupnorm_1.weight'] = original_model['first_stage_model.encoder.down.2.block.1.norm1.weight']
converted['encoder']['8.groupnorm_1.bias'] = original_model['first_stage_model.encoder.down.2.block.1.norm1.bias']
converted['encoder']['8.conv_1.weight'] = original_model['first_stage_model.encoder.down.2.block.1.conv1.weight']
converted['encoder']['8.conv_1.bias'] = original_model['first_stage_model.encoder.down.2.block.1.conv1.bias']
converted['encoder']['8.groupnorm_2.weight'] = original_model['first_stage_model.encoder.down.2.block.1.norm2.weight']
converted['encoder']['8.groupnorm_2.bias'] = original_model['first_stage_model.encoder.down.2.block.1.norm2.bias']
converted['encoder']['8.conv_2.weight'] = original_model['first_stage_model.encoder.down.2.block.1.conv2.weight']
converted['encoder']['8.conv_2.bias'] = original_model['first_stage_model.encoder.down.2.block.1.conv2.bias']
converted['encoder']['9.weight'] = original_model['first_stage_model.encoder.down.2.downsample.conv.weight']
converted['encoder']['9.bias'] = original_model['first_stage_model.encoder.down.2.downsample.conv.bias']
converted['encoder']['10.groupnorm_1.weight'] = original_model['first_stage_model.encoder.down.3.block.0.norm1.weight']
converted['encoder']['10.groupnorm_1.bias'] = original_model['first_stage_model.encoder.down.3.block.0.norm1.bias']
converted['encoder']['10.conv_1.weight'] = original_model['first_stage_model.encoder.down.3.block.0.conv1.weight']
converted['encoder']['10.conv_1.bias'] = original_model['first_stage_model.encoder.down.3.block.0.conv1.bias']
converted['encoder']['10.groupnorm_2.weight'] = original_model['first_stage_model.encoder.down.3.block.0.norm2.weight']
converted['encoder']['10.groupnorm_2.bias'] = original_model['first_stage_model.encoder.down.3.block.0.norm2.bias']
converted['encoder']['10.conv_2.weight'] = original_model['first_stage_model.encoder.down.3.block.0.conv2.weight']
converted['encoder']['10.conv_2.bias'] = original_model['first_stage_model.encoder.down.3.block.0.conv2.bias']
converted['encoder']['11.groupnorm_1.weight'] = original_model['first_stage_model.encoder.down.3.block.1.norm1.weight']
converted['encoder']['11.groupnorm_1.bias'] = original_model['first_stage_model.encoder.down.3.block.1.norm1.bias']
converted['encoder']['11.conv_1.weight'] = original_model['first_stage_model.encoder.down.3.block.1.conv1.weight']
converted['encoder']['11.conv_1.bias'] = original_model['first_stage_model.encoder.down.3.block.1.conv1.bias']
converted['encoder']['11.groupnorm_2.weight'] = original_model['first_stage_model.encoder.down.3.block.1.norm2.weight']
converted['encoder']['11.groupnorm_2.bias'] = original_model['first_stage_model.encoder.down.3.block.1.norm2.bias']
converted['encoder']['11.conv_2.weight'] = original_model['first_stage_model.encoder.down.3.block.1.conv2.weight']
converted['encoder']['11.conv_2.bias'] = original_model['first_stage_model.encoder.down.3.block.1.conv2.bias']
converted['encoder']['12.groupnorm_1.weight'] = original_model['first_stage_model.encoder.mid.block_1.norm1.weight']
converted['encoder']['12.groupnorm_1.bias'] = original_model['first_stage_model.encoder.mid.block_1.norm1.bias']
converted['encoder']['12.conv_1.weight'] = original_model['first_stage_model.encoder.mid.block_1.conv1.weight']
converted['encoder']['12.conv_1.bias'] = original_model['first_stage_model.encoder.mid.block_1.conv1.bias']
converted['encoder']['12.groupnorm_2.weight'] = original_model['first_stage_model.encoder.mid.block_1.norm2.weight']
converted['encoder']['12.groupnorm_2.bias'] = original_model['first_stage_model.encoder.mid.block_1.norm2.bias']
converted['encoder']['12.conv_2.weight'] = original_model['first_stage_model.encoder.mid.block_1.conv2.weight']
converted['encoder']['12.conv_2.bias'] = original_model['first_stage_model.encoder.mid.block_1.conv2.bias']
converted['encoder']['13.groupnorm.weight'] = original_model['first_stage_model.encoder.mid.attn_1.norm.weight']
converted['encoder']['13.groupnorm.bias'] = original_model['first_stage_model.encoder.mid.attn_1.norm.bias']
converted['encoder']['13.attention.out_proj.bias'] = original_model['first_stage_model.encoder.mid.attn_1.proj_out.bias']
converted['encoder']['14.groupnorm_1.weight'] = original_model['first_stage_model.encoder.mid.block_2.norm1.weight']
converted['encoder']['14.groupnorm_1.bias'] = original_model['first_stage_model.encoder.mid.block_2.norm1.bias']
converted['encoder']['14.conv_1.weight'] = original_model['first_stage_model.encoder.mid.block_2.conv1.weight']
converted['encoder']['14.conv_1.bias'] = original_model['first_stage_model.encoder.mid.block_2.conv1.bias']
converted['encoder']['14.groupnorm_2.weight'] = original_model['first_stage_model.encoder.mid.block_2.norm2.weight']
converted['encoder']['14.groupnorm_2.bias'] = original_model['first_stage_model.encoder.mid.block_2.norm2.bias']
converted['encoder']['14.conv_2.weight'] = original_model['first_stage_model.encoder.mid.block_2.conv2.weight']
converted['encoder']['14.conv_2.bias'] = original_model['first_stage_model.encoder.mid.block_2.conv2.bias']
converted['encoder']['15.weight'] = original_model['first_stage_model.encoder.norm_out.weight']
converted['encoder']['15.bias'] = original_model['first_stage_model.encoder.norm_out.bias']
converted['encoder']['17.weight'] = original_model['first_stage_model.encoder.conv_out.weight']
converted['encoder']['17.bias'] = original_model['first_stage_model.encoder.conv_out.bias']
converted['decoder']['1.weight'] = original_model['first_stage_model.decoder.conv_in.weight']
converted['decoder']['1.bias'] = original_model['first_stage_model.decoder.conv_in.bias']
converted['decoder']['2.groupnorm_1.weight'] = original_model['first_stage_model.decoder.mid.block_1.norm1.weight']
converted['decoder']['2.groupnorm_1.bias'] = original_model['first_stage_model.decoder.mid.block_1.norm1.bias']
converted['decoder']['2.conv_1.weight'] = original_model['first_stage_model.decoder.mid.block_1.conv1.weight']
converted['decoder']['2.conv_1.bias'] = original_model['first_stage_model.decoder.mid.block_1.conv1.bias']
converted['decoder']['2.groupnorm_2.weight'] = original_model['first_stage_model.decoder.mid.block_1.norm2.weight']
converted['decoder']['2.groupnorm_2.bias'] = original_model['first_stage_model.decoder.mid.block_1.norm2.bias']
converted['decoder']['2.conv_2.weight'] = original_model['first_stage_model.decoder.mid.block_1.conv2.weight']
converted['decoder']['2.conv_2.bias'] = original_model['first_stage_model.decoder.mid.block_1.conv2.bias']
converted['decoder']['3.groupnorm.weight'] = original_model['first_stage_model.decoder.mid.attn_1.norm.weight']
converted['decoder']['3.groupnorm.bias'] = original_model['first_stage_model.decoder.mid.attn_1.norm.bias']
converted['decoder']['3.attention.out_proj.bias'] = original_model['first_stage_model.decoder.mid.attn_1.proj_out.bias']
converted['decoder']['4.groupnorm_1.weight'] = original_model['first_stage_model.decoder.mid.block_2.norm1.weight']
converted['decoder']['4.groupnorm_1.bias'] = original_model['first_stage_model.decoder.mid.block_2.norm1.bias']
converted['decoder']['4.conv_1.weight'] = original_model['first_stage_model.decoder.mid.block_2.conv1.weight']
converted['decoder']['4.conv_1.bias'] = original_model['first_stage_model.decoder.mid.block_2.conv1.bias']
converted['decoder']['4.groupnorm_2.weight'] = original_model['first_stage_model.decoder.mid.block_2.norm2.weight']
converted['decoder']['4.groupnorm_2.bias'] = original_model['first_stage_model.decoder.mid.block_2.norm2.bias']
converted['decoder']['4.conv_2.weight'] = original_model['first_stage_model.decoder.mid.block_2.conv2.weight']
converted['decoder']['4.conv_2.bias'] = original_model['first_stage_model.decoder.mid.block_2.conv2.bias']
converted['decoder']['20.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.0.block.0.norm1.weight']
converted['decoder']['20.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.0.block.0.norm1.bias']
converted['decoder']['20.conv_1.weight'] = original_model['first_stage_model.decoder.up.0.block.0.conv1.weight']
converted['decoder']['20.conv_1.bias'] = original_model['first_stage_model.decoder.up.0.block.0.conv1.bias']
converted['decoder']['20.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.0.block.0.norm2.weight']
converted['decoder']['20.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.0.block.0.norm2.bias']
converted['decoder']['20.conv_2.weight'] = original_model['first_stage_model.decoder.up.0.block.0.conv2.weight']
converted['decoder']['20.conv_2.bias'] = original_model['first_stage_model.decoder.up.0.block.0.conv2.bias']
converted['decoder']['20.residual_layer.weight'] = original_model['first_stage_model.decoder.up.0.block.0.nin_shortcut.weight']
converted['decoder']['20.residual_layer.bias'] = original_model['first_stage_model.decoder.up.0.block.0.nin_shortcut.bias']
converted['decoder']['21.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.0.block.1.norm1.weight']
converted['decoder']['21.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.0.block.1.norm1.bias']
converted['decoder']['21.conv_1.weight'] = original_model['first_stage_model.decoder.up.0.block.1.conv1.weight']
converted['decoder']['21.conv_1.bias'] = original_model['first_stage_model.decoder.up.0.block.1.conv1.bias']
converted['decoder']['21.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.0.block.1.norm2.weight']
converted['decoder']['21.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.0.block.1.norm2.bias']
converted['decoder']['21.conv_2.weight'] = original_model['first_stage_model.decoder.up.0.block.1.conv2.weight']
converted['decoder']['21.conv_2.bias'] = original_model['first_stage_model.decoder.up.0.block.1.conv2.bias']
converted['decoder']['22.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.0.block.2.norm1.weight']
converted['decoder']['22.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.0.block.2.norm1.bias']
converted['decoder']['22.conv_1.weight'] = original_model['first_stage_model.decoder.up.0.block.2.conv1.weight']
converted['decoder']['22.conv_1.bias'] = original_model['first_stage_model.decoder.up.0.block.2.conv1.bias']
converted['decoder']['22.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.0.block.2.norm2.weight']
converted['decoder']['22.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.0.block.2.norm2.bias']
converted['decoder']['22.conv_2.weight'] = original_model['first_stage_model.decoder.up.0.block.2.conv2.weight']
converted['decoder']['22.conv_2.bias'] = original_model['first_stage_model.decoder.up.0.block.2.conv2.bias']
converted['decoder']['15.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.1.block.0.norm1.weight']
converted['decoder']['15.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.1.block.0.norm1.bias']
converted['decoder']['15.conv_1.weight'] = original_model['first_stage_model.decoder.up.1.block.0.conv1.weight']
converted['decoder']['15.conv_1.bias'] = original_model['first_stage_model.decoder.up.1.block.0.conv1.bias']
converted['decoder']['15.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.1.block.0.norm2.weight']
converted['decoder']['15.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.1.block.0.norm2.bias']
converted['decoder']['15.conv_2.weight'] = original_model['first_stage_model.decoder.up.1.block.0.conv2.weight']
converted['decoder']['15.conv_2.bias'] = original_model['first_stage_model.decoder.up.1.block.0.conv2.bias']
converted['decoder']['15.residual_layer.weight'] = original_model['first_stage_model.decoder.up.1.block.0.nin_shortcut.weight']
converted['decoder']['15.residual_layer.bias'] = original_model['first_stage_model.decoder.up.1.block.0.nin_shortcut.bias']
converted['decoder']['16.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.1.block.1.norm1.weight']
converted['decoder']['16.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.1.block.1.norm1.bias']
converted['decoder']['16.conv_1.weight'] = original_model['first_stage_model.decoder.up.1.block.1.conv1.weight']
converted['decoder']['16.conv_1.bias'] = original_model['first_stage_model.decoder.up.1.block.1.conv1.bias']
converted['decoder']['16.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.1.block.1.norm2.weight']
converted['decoder']['16.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.1.block.1.norm2.bias']
converted['decoder']['16.conv_2.weight'] = original_model['first_stage_model.decoder.up.1.block.1.conv2.weight']
converted['decoder']['16.conv_2.bias'] = original_model['first_stage_model.decoder.up.1.block.1.conv2.bias']
converted['decoder']['17.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.1.block.2.norm1.weight']
converted['decoder']['17.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.1.block.2.norm1.bias']
converted['decoder']['17.conv_1.weight'] = original_model['first_stage_model.decoder.up.1.block.2.conv1.weight']
converted['decoder']['17.conv_1.bias'] = original_model['first_stage_model.decoder.up.1.block.2.conv1.bias']
converted['decoder']['17.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.1.block.2.norm2.weight']
converted['decoder']['17.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.1.block.2.norm2.bias']
converted['decoder']['17.conv_2.weight'] = original_model['first_stage_model.decoder.up.1.block.2.conv2.weight']
converted['decoder']['17.conv_2.bias'] = original_model['first_stage_model.decoder.up.1.block.2.conv2.bias']
converted['decoder']['19.weight'] = original_model['first_stage_model.decoder.up.1.upsample.conv.weight']
converted['decoder']['19.bias'] = original_model['first_stage_model.decoder.up.1.upsample.conv.bias']
converted['decoder']['10.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.2.block.0.norm1.weight']
converted['decoder']['10.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.2.block.0.norm1.bias']
converted['decoder']['10.conv_1.weight'] = original_model['first_stage_model.decoder.up.2.block.0.conv1.weight']
converted['decoder']['10.conv_1.bias'] = original_model['first_stage_model.decoder.up.2.block.0.conv1.bias']
converted['decoder']['10.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.2.block.0.norm2.weight']
converted['decoder']['10.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.2.block.0.norm2.bias']
converted['decoder']['10.conv_2.weight'] = original_model['first_stage_model.decoder.up.2.block.0.conv2.weight']
converted['decoder']['10.conv_2.bias'] = original_model['first_stage_model.decoder.up.2.block.0.conv2.bias']
converted['decoder']['11.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.2.block.1.norm1.weight']
converted['decoder']['11.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.2.block.1.norm1.bias']
converted['decoder']['11.conv_1.weight'] = original_model['first_stage_model.decoder.up.2.block.1.conv1.weight']
converted['decoder']['11.conv_1.bias'] = original_model['first_stage_model.decoder.up.2.block.1.conv1.bias']
converted['decoder']['11.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.2.block.1.norm2.weight']
converted['decoder']['11.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.2.block.1.norm2.bias']
converted['decoder']['11.conv_2.weight'] = original_model['first_stage_model.decoder.up.2.block.1.conv2.weight']
converted['decoder']['11.conv_2.bias'] = original_model['first_stage_model.decoder.up.2.block.1.conv2.bias']
converted['decoder']['12.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.2.block.2.norm1.weight']
converted['decoder']['12.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.2.block.2.norm1.bias']
converted['decoder']['12.conv_1.weight'] = original_model['first_stage_model.decoder.up.2.block.2.conv1.weight']
converted['decoder']['12.conv_1.bias'] = original_model['first_stage_model.decoder.up.2.block.2.conv1.bias']
converted['decoder']['12.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.2.block.2.norm2.weight']
converted['decoder']['12.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.2.block.2.norm2.bias']
converted['decoder']['12.conv_2.weight'] = original_model['first_stage_model.decoder.up.2.block.2.conv2.weight']
converted['decoder']['12.conv_2.bias'] = original_model['first_stage_model.decoder.up.2.block.2.conv2.bias']
converted['decoder']['14.weight'] = original_model['first_stage_model.decoder.up.2.upsample.conv.weight']
converted['decoder']['14.bias'] = original_model['first_stage_model.decoder.up.2.upsample.conv.bias']
converted['decoder']['5.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.3.block.0.norm1.weight']
converted['decoder']['5.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.3.block.0.norm1.bias']
converted['decoder']['5.conv_1.weight'] = original_model['first_stage_model.decoder.up.3.block.0.conv1.weight']
converted['decoder']['5.conv_1.bias'] = original_model['first_stage_model.decoder.up.3.block.0.conv1.bias']
converted['decoder']['5.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.3.block.0.norm2.weight']
converted['decoder']['5.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.3.block.0.norm2.bias']
converted['decoder']['5.conv_2.weight'] = original_model['first_stage_model.decoder.up.3.block.0.conv2.weight']
converted['decoder']['5.conv_2.bias'] = original_model['first_stage_model.decoder.up.3.block.0.conv2.bias']
converted['decoder']['6.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.3.block.1.norm1.weight']
converted['decoder']['6.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.3.block.1.norm1.bias']
converted['decoder']['6.conv_1.weight'] = original_model['first_stage_model.decoder.up.3.block.1.conv1.weight']
converted['decoder']['6.conv_1.bias'] = original_model['first_stage_model.decoder.up.3.block.1.conv1.bias']
converted['decoder']['6.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.3.block.1.norm2.weight']
converted['decoder']['6.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.3.block.1.norm2.bias']
converted['decoder']['6.conv_2.weight'] = original_model['first_stage_model.decoder.up.3.block.1.conv2.weight']
converted['decoder']['6.conv_2.bias'] = original_model['first_stage_model.decoder.up.3.block.1.conv2.bias']
converted['decoder']['7.groupnorm_1.weight'] = original_model['first_stage_model.decoder.up.3.block.2.norm1.weight']
converted['decoder']['7.groupnorm_1.bias'] = original_model['first_stage_model.decoder.up.3.block.2.norm1.bias']
converted['decoder']['7.conv_1.weight'] = original_model['first_stage_model.decoder.up.3.block.2.conv1.weight']
converted['decoder']['7.conv_1.bias'] = original_model['first_stage_model.decoder.up.3.block.2.conv1.bias']
converted['decoder']['7.groupnorm_2.weight'] = original_model['first_stage_model.decoder.up.3.block.2.norm2.weight']
converted['decoder']['7.groupnorm_2.bias'] = original_model['first_stage_model.decoder.up.3.block.2.norm2.bias']
converted['decoder']['7.conv_2.weight'] = original_model['first_stage_model.decoder.up.3.block.2.conv2.weight']
converted['decoder']['7.conv_2.bias'] = original_model['first_stage_model.decoder.up.3.block.2.conv2.bias']
converted['decoder']['9.weight'] = original_model['first_stage_model.decoder.up.3.upsample.conv.weight']
converted['decoder']['9.bias'] = original_model['first_stage_model.decoder.up.3.upsample.conv.bias']
converted['decoder']['23.weight'] = original_model['first_stage_model.decoder.norm_out.weight']
converted['decoder']['23.bias'] = original_model['first_stage_model.decoder.norm_out.bias']
converted['decoder']['25.weight'] = original_model['first_stage_model.decoder.conv_out.weight']
converted['decoder']['25.bias'] = original_model['first_stage_model.decoder.conv_out.bias']
converted['encoder']['18.weight'] = original_model['first_stage_model.quant_conv.weight']
converted['encoder']['18.bias'] = original_model['first_stage_model.quant_conv.bias']
converted['decoder']['0.weight'] = original_model['first_stage_model.post_quant_conv.weight']
converted['decoder']['0.bias'] = original_model['first_stage_model.post_quant_conv.bias']
converted['clip']['embedding.token_embedding.weight'] = original_model['cond_stage_model.transformer.text_model.embeddings.token_embedding.weight']
converted['clip']['embedding.position_embedding'] = original_model['cond_stage_model.transformer.text_model.embeddings.position_embedding.weight']
converted['clip']['layers.0.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.out_proj.weight']
converted['clip']['layers.0.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.out_proj.bias']
converted['clip']['layers.0.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1.weight']
converted['clip']['layers.0.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1.bias']
converted['clip']['layers.0.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc1.weight']
converted['clip']['layers.0.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc1.bias']
converted['clip']['layers.0.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc2.weight']
converted['clip']['layers.0.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc2.bias']
converted['clip']['layers.0.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm2.weight']
converted['clip']['layers.0.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm2.bias']
converted['clip']['layers.1.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.out_proj.weight']
converted['clip']['layers.1.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.out_proj.bias']
converted['clip']['layers.1.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm1.weight']
converted['clip']['layers.1.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm1.bias']
converted['clip']['layers.1.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc1.weight']
converted['clip']['layers.1.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc1.bias']
converted['clip']['layers.1.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc2.weight']
converted['clip']['layers.1.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc2.bias']
converted['clip']['layers.1.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm2.weight']
converted['clip']['layers.1.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm2.bias']
converted['clip']['layers.2.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.out_proj.weight']
converted['clip']['layers.2.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.out_proj.bias']
converted['clip']['layers.2.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm1.weight']
converted['clip']['layers.2.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm1.bias']
converted['clip']['layers.2.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc1.weight']
converted['clip']['layers.2.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc1.bias']
converted['clip']['layers.2.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc2.weight']
converted['clip']['layers.2.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc2.bias']
converted['clip']['layers.2.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm2.weight']
converted['clip']['layers.2.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm2.bias']
converted['clip']['layers.3.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj.weight']
converted['clip']['layers.3.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj.bias']
converted['clip']['layers.3.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm1.weight']
converted['clip']['layers.3.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm1.bias']
converted['clip']['layers.3.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc1.weight']
converted['clip']['layers.3.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc1.bias']
converted['clip']['layers.3.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc2.weight']
converted['clip']['layers.3.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc2.bias']
converted['clip']['layers.3.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2.weight']
converted['clip']['layers.3.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2.bias']
converted['clip']['layers.4.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.out_proj.weight']
converted['clip']['layers.4.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.out_proj.bias']
converted['clip']['layers.4.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm1.weight']
converted['clip']['layers.4.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm1.bias']
converted['clip']['layers.4.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc1.weight']
converted['clip']['layers.4.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc1.bias']
converted['clip']['layers.4.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc2.weight']
converted['clip']['layers.4.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc2.bias']
converted['clip']['layers.4.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm2.weight']
converted['clip']['layers.4.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm2.bias']
converted['clip']['layers.5.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.out_proj.weight']
converted['clip']['layers.5.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.out_proj.bias']
converted['clip']['layers.5.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm1.weight']
converted['clip']['layers.5.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm1.bias']
converted['clip']['layers.5.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc1.weight']
converted['clip']['layers.5.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc1.bias']
converted['clip']['layers.5.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc2.weight']
converted['clip']['layers.5.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc2.bias']
converted['clip']['layers.5.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm2.weight']
converted['clip']['layers.5.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm2.bias']
converted['clip']['layers.6.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.out_proj.weight']
converted['clip']['layers.6.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.out_proj.bias']
converted['clip']['layers.6.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm1.weight']
converted['clip']['layers.6.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm1.bias']
converted['clip']['layers.6.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc1.weight']
converted['clip']['layers.6.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc1.bias']
converted['clip']['layers.6.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc2.weight']
converted['clip']['layers.6.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc2.bias']
converted['clip']['layers.6.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm2.weight']
converted['clip']['layers.6.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm2.bias']
converted['clip']['layers.7.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.out_proj.weight']
converted['clip']['layers.7.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.out_proj.bias']
converted['clip']['layers.7.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm1.weight']
converted['clip']['layers.7.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm1.bias']
converted['clip']['layers.7.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc1.weight']
converted['clip']['layers.7.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc1.bias']
converted['clip']['layers.7.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc2.weight']
converted['clip']['layers.7.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc2.bias']
converted['clip']['layers.7.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm2.weight']
converted['clip']['layers.7.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm2.bias']
converted['clip']['layers.8.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.out_proj.weight']
converted['clip']['layers.8.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.out_proj.bias']
converted['clip']['layers.8.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm1.weight']
converted['clip']['layers.8.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm1.bias']
converted['clip']['layers.8.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc1.weight']
converted['clip']['layers.8.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc1.bias']
converted['clip']['layers.8.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc2.weight']
converted['clip']['layers.8.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc2.bias']
converted['clip']['layers.8.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm2.weight']
converted['clip']['layers.8.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm2.bias']
converted['clip']['layers.9.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.out_proj.weight']
converted['clip']['layers.9.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.out_proj.bias']
converted['clip']['layers.9.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm1.weight']
converted['clip']['layers.9.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm1.bias']
converted['clip']['layers.9.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc1.weight']
converted['clip']['layers.9.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc1.bias']
converted['clip']['layers.9.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc2.weight']
converted['clip']['layers.9.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc2.bias']
converted['clip']['layers.9.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm2.weight']
converted['clip']['layers.9.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm2.bias']
converted['clip']['layers.10.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.out_proj.weight']
converted['clip']['layers.10.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.out_proj.bias']
converted['clip']['layers.10.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm1.weight']
converted['clip']['layers.10.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm1.bias']
converted['clip']['layers.10.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc1.weight']
converted['clip']['layers.10.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc1.bias']
converted['clip']['layers.10.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc2.weight']
converted['clip']['layers.10.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc2.bias']
converted['clip']['layers.10.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm2.weight']
converted['clip']['layers.10.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm2.bias']
converted['clip']['layers.11.attention.out_proj.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.out_proj.weight']
converted['clip']['layers.11.attention.out_proj.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.out_proj.bias']
converted['clip']['layers.11.layernorm_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm1.weight']
converted['clip']['layers.11.layernorm_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm1.bias']
converted['clip']['layers.11.linear_1.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc1.weight']
converted['clip']['layers.11.linear_1.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc1.bias']
converted['clip']['layers.11.linear_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc2.weight']
converted['clip']['layers.11.linear_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc2.bias']
converted['clip']['layers.11.layernorm_2.weight'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm2.weight']
converted['clip']['layers.11.layernorm_2.bias'] = original_model['cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm2.bias']
converted['clip']['layernorm.weight'] = original_model['cond_stage_model.transformer.text_model.final_layer_norm.weight']
converted['clip']['layernorm.bias'] = original_model['cond_stage_model.transformer.text_model.final_layer_norm.bias']
converted['diffusion']['unet.encoders.1.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.encoders.2.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.encoders.4.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.encoders.5.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.encoders.7.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.encoders.8.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.bottleneck.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.decoders.3.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.decoders.4.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.decoders.5.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.decoders.6.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.decoders.7.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.decoders.8.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.decoders.9.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.decoders.10.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['diffusion']['unet.decoders.11.1.attention_1.in_proj.weight'] = torch.cat((original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_q.weight'], original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_k.weight'], original_model['model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_v.weight']), 0)
converted['encoder']['13.attention.in_proj.weight'] = torch.cat((original_model['first_stage_model.encoder.mid.attn_1.q.weight'], original_model['first_stage_model.encoder.mid.attn_1.k.weight'], original_model['first_stage_model.encoder.mid.attn_1.v.weight']), 0).reshape((1536, 512))
converted['encoder']['13.attention.in_proj.bias'] = torch.cat((original_model['first_stage_model.encoder.mid.attn_1.q.bias'], original_model['first_stage_model.encoder.mid.attn_1.k.bias'], original_model['first_stage_model.encoder.mid.attn_1.v.bias']), 0)
converted['encoder']['13.attention.out_proj.weight'] = original_model['first_stage_model.encoder.mid.attn_1.proj_out.weight'].reshape((512, 512))
converted['decoder']['3.attention.in_proj.weight'] = torch.cat((original_model['first_stage_model.decoder.mid.attn_1.q.weight'], original_model['first_stage_model.decoder.mid.attn_1.k.weight'], original_model['first_stage_model.decoder.mid.attn_1.v.weight']), 0).reshape((1536, 512))
converted['decoder']['3.attention.in_proj.bias'] = torch.cat((original_model['first_stage_model.decoder.mid.attn_1.q.bias'], original_model['first_stage_model.decoder.mid.attn_1.k.bias'], original_model['first_stage_model.decoder.mid.attn_1.v.bias']), 0)
converted['decoder']['3.attention.out_proj.weight'] = original_model['first_stage_model.decoder.mid.attn_1.proj_out.weight'].reshape((512, 512))
converted['clip']['layers.0.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.v_proj.weight']), 0)
converted['clip']['layers.0.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.v_proj.bias']), 0)
converted['clip']['layers.1.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.v_proj.weight']), 0)
converted['clip']['layers.1.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.v_proj.bias']), 0)
converted['clip']['layers.2.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.v_proj.weight']), 0)
converted['clip']['layers.2.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.v_proj.bias']), 0)
converted['clip']['layers.3.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.v_proj.weight']), 0)
converted['clip']['layers.3.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.v_proj.bias']), 0)
converted['clip']['layers.4.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.v_proj.weight']), 0)
converted['clip']['layers.4.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.v_proj.bias']), 0)
converted['clip']['layers.5.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.v_proj.weight']), 0)
converted['clip']['layers.5.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.v_proj.bias']), 0)
converted['clip']['layers.6.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.v_proj.weight']), 0)
converted['clip']['layers.6.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.v_proj.bias']), 0)
converted['clip']['layers.7.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.v_proj.weight']), 0)
converted['clip']['layers.7.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.v_proj.bias']), 0)
converted['clip']['layers.8.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.v_proj.weight']), 0)
converted['clip']['layers.8.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.v_proj.bias']), 0)
converted['clip']['layers.9.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.v_proj.weight']), 0)
converted['clip']['layers.9.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.v_proj.bias']), 0)
converted['clip']['layers.10.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.v_proj.weight']), 0)
converted['clip']['layers.10.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.v_proj.bias']), 0)
converted['clip']['layers.11.attention.in_proj.weight'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.q_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj.weight'], original_model['cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.v_proj.weight']), 0)
converted['clip']['layers.11.attention.in_proj.bias'] = torch.cat((original_model['cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.q_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj.bias'], original_model['cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.v_proj.bias']), 0)
return converted |