File size: 4,324 Bytes
056ab49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import torch.nn as nn
from torch.nn import functional as F
from helperVAE import VAE_AttentionBlock, VAE_ResidualBlock

class VAE_Decoder(nn.Sequential):
    def __init__(self):
        super().__init__(
            # (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
            nn.Conv2d(4, 4, kernel_size=1, padding=0),

            # (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
            nn.Conv2d(4, 512, kernel_size=3, padding=1),

            # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
            VAE_ResidualBlock(512, 512),

            # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
            VAE_AttentionBlock(512),

            # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
            VAE_ResidualBlock(512, 512),

            # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
            VAE_ResidualBlock(512, 512),

            # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
            VAE_ResidualBlock(512, 512),

            # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
            VAE_ResidualBlock(512, 512),

            # Repeats the rows and columns of the data by scale_factor (like when you resize an image by doubling its size).
            # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 4, Width / 4)
            nn.Upsample(scale_factor=2),

            # (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
            nn.Conv2d(512, 512, kernel_size=3, padding=1),

            # (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
            VAE_ResidualBlock(512, 512),

            # (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
            VAE_ResidualBlock(512, 512),

            # (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
            VAE_ResidualBlock(512, 512),

            # (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 2, Width / 2)
            nn.Upsample(scale_factor=2),

            # (Batch_Size, 512, Height / 2, Width / 2) -> (Batch_Size, 512, Height / 2, Width / 2)
            nn.Conv2d(512, 512, kernel_size=3, padding=1),

            # (Batch_Size, 512, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
            VAE_ResidualBlock(512, 256),

            # (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
            VAE_ResidualBlock(256, 256),

            # (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
            VAE_ResidualBlock(256, 256),

            # (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height, Width)
            nn.Upsample(scale_factor=2),

            # (Batch_Size, 256, Height, Width) -> (Batch_Size, 256, Height, Width)
            nn.Conv2d(256, 256, kernel_size=3, padding=1),

            # (Batch_Size, 256, Height, Width) -> (Batch_Size, 128, Height, Width)
            VAE_ResidualBlock(256, 128),

            # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
            VAE_ResidualBlock(128, 128),

            # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
            VAE_ResidualBlock(128, 128),

            # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
            nn.GroupNorm(32, 128),

            # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
            nn.SiLU(),

            # (Batch_Size, 128, Height, Width) -> (Batch_Size, 3, Height, Width)
            nn.Conv2d(128, 3, kernel_size=3, padding=1),
        )

    def forward(self, x):
        # x: (Batch_Size, 4, Height / 8, Width / 8)

        # Remove the scaling added by the Encoder.
        x /= 0.18215

        for module in self:
            x = module(x)

        # (Batch_Size, 3, Height, Width)
        return x