import math import torch import torch.nn as nn from torch.nn import functional as F #Attention: softmax(q @ k.transpose / sqrt(dk)) @ w class SelfAttention(nn.Module): def __init__(self, n_heads, d_embed, in_proj_bias=True, out_proj_bias=True): super().__init__() # This combines the Wq, Wk and Wv matrices into one matrix self.in_proj = nn.Linear(d_embed, 3 * d_embed, bias=in_proj_bias) # This one represents the Wo matrix self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias) self.n_heads = n_heads self.d_head = d_embed // n_heads def forward(self, x, causal_mask=False): # (Batch_Size, Seq_Len, Dim) input_shape = x.shape # (Batch_Size, Seq_Len, Dim) batch_size, sequence_length, d_embed = input_shape # (Batch_Size, Seq_Len, H, Dim / H) interim_shape = (batch_size, sequence_length, self.n_heads, self.d_head) # (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim * 3) -> 3 tensor of shape (Batch_Size, Seq_Len, Dim) q, k, v = self.in_proj(x).chunk(3, dim=-1) # (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, H, Dim / H) -> (Batch_Size, H, Seq_Len, Dim / H) q = q.view(interim_shape).transpose(1, 2) k = k.view(interim_shape).transpose(1, 2) v = v.view(interim_shape).transpose(1, 2) # (Batch_Size, H, Seq_Len, Dim / H) @ (Batch_Size, H, Dim / H, Seq_Len) -> (Batch_Size, H, Seq_Len, Seq_Len) weight = q @ k.transpose(-1, -2) if causal_mask: # It masks the token after the current tokens so that the future tokens are not accessible # Mask where the upper triangle (above the principal diagonal) is 1 mask = torch.ones_like(weight, dtype=torch.bool).triu(1) # Fill the upper triangle with -inf weight.masked_fill_(mask, -torch.inf) # Divide by d_k (Dim / H). # (Batch_Size, H, Seq_Len, Seq_Len) -> (Batch_Size, H, Seq_Len, Seq_Len) weight /= math.sqrt(self.d_head) # (Batch_Size, H, Seq_Len, Seq_Len) -> (Batch_Size, H, Seq_Len, Seq_Len) weight = F.softmax(weight, dim=-1) # (Batch_Size, H, Seq_Len, Seq_Len) @ (Batch_Size, H, Seq_Len, Dim / H) -> (Batch_Size, H, Seq_Len, Dim / H) output = weight @ v # (Batch_Size, H, Seq_Len, Dim / H) -> (Batch_Size, Seq_Len, H, Dim / H) output = output.transpose(1, 2) # (Batch_Size, Seq_Len, H, Dim / H) -> (Batch_Size, Seq_Len, Dim) output = output.reshape(input_shape) # (Batch_Size, Seq_Len, Dim) -> (Batch_Size, Seq_Len, Dim) output = self.out_proj(output) # (Batch_Size, Seq_Len, Dim) return output # Calculate Attention between latent and prompt(context) class CrossAttention(nn.Module): def __init__(self, n_heads, d_embed, d_cross, in_proj_bias=True, out_proj_bias=True): super().__init__() self.q_proj = nn.Linear(d_embed, d_embed, bias=in_proj_bias) self.k_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias) self.v_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias) self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias) self.n_heads = n_heads self.d_head = d_embed // n_heads def forward(self, x, y): # x (latent): # (Batch_Size, Seq_Len_Q, Dim_Q) # y (context): # (Batch_Size, Seq_Len_KV, Dim_KV) = (Batch_Size, 77, 768) # Input shape: (b, h*w, c) -> (b, seq_legth, d_model) = (b, h/8*w/8, 512) input_shape = x.shape batch_size, sequence_length, d_embed = input_shape # Divide each embedding of Q into multiple heads such that d_heads * n_heads = Dim_Q interim_shape = (batch_size, -1, self.n_heads, self.d_head) # In cross attention query is taken from one element (latent here) and key, values are taken from another element (context) # (Batch_Size, Seq_Len_Q, Dim_Q) -> (Batch_Size, Seq_Len_Q, Dim_Q) q = self.q_proj(x) # (Batch_Size, Seq_Len_KV, Dim_KV) -> (Batch_Size, Seq_Len_KV, Dim_Q) k = self.k_proj(y) # (Batch_Size, Seq_Len_KV, Dim_KV) -> (Batch_Size, Seq_Len_KV, Dim_Q) v = self.v_proj(y) # (Batch_Size, Seq_Len_Q, Dim_Q) -> (Batch_Size, Seq_Len_Q, H, Dim_Q / H) -> (Batch_Size, H, Seq_Len_Q, Dim_Q / H) q = q.view(interim_shape).transpose(1, 2) # (Batch_Size, Seq_Len_KV, Dim_Q) -> (Batch_Size, Seq_Len_KV, H, Dim_Q / H) -> (Batch_Size, H, Seq_Len_KV, Dim_Q / H) k = k.view(interim_shape).transpose(1, 2) # (Batch_Size, Seq_Len_KV, Dim_Q) -> (Batch_Size, Seq_Len_KV, H, Dim_Q / H) -> (Batch_Size, H, Seq_Len_KV, Dim_Q / H) v = v.view(interim_shape).transpose(1, 2) # (Batch_Size, H, Seq_Len_Q, Dim_Q / H) @ (Batch_Size, H, Dim_Q / H, Seq_Len_KV) -> (Batch_Size, H, Seq_Len_Q, Seq_Len_KV) weight = q @ k.transpose(-1, -2) # (Batch_Size, H, Seq_Len_Q, Seq_Len_KV) weight /= math.sqrt(self.d_head) # (Batch_Size, H, Seq_Len_Q, Seq_Len_KV) weight = F.softmax(weight, dim=-1) # (Batch_Size, H, Seq_Len_Q, Seq_Len_KV) @ (Batch_Size, H, Seq_Len_KV, Dim_Q / H) -> (Batch_Size, H, Seq_Len_Q, Dim_Q / H) output = weight @ v # (Batch_Size, H, Seq_Len_Q, Dim_Q / H) -> (Batch_Size, Seq_Len_Q, H, Dim_Q / H) output = output.transpose(1, 2).contiguous() # (Batch_Size, Seq_Len_Q, H, Dim_Q / H) -> (Batch_Size, Seq_Len_Q, Dim_Q) output = output.view(input_shape) # (Batch_Size, Seq_Len_Q, Dim_Q) -> (Batch_Size, Seq_Len_Q, Dim_Q) output = self.out_proj(output) # (Batch_Size, Seq_Len, Dim) -> (b, h/8*w/8, 512) = (b, h*w, d_model) return output