import torch import torch.nn as nn from torch.nn import functional as F from helperVAE import VAE_AttentionBlock, VAE_ResidualBlock class VAE_Decoder(nn.Sequential): def __init__(self): super().__init__( # (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8) nn.Conv2d(4, 4, kernel_size=1, padding=0), # (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8) nn.Conv2d(4, 512, kernel_size=3, padding=1), # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8) VAE_ResidualBlock(512, 512), # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8) VAE_AttentionBlock(512), # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8) VAE_ResidualBlock(512, 512), # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8) VAE_ResidualBlock(512, 512), # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8) VAE_ResidualBlock(512, 512), # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8) VAE_ResidualBlock(512, 512), # Repeats the rows and columns of the data by scale_factor (like when you resize an image by doubling its size). # (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 4, Width / 4) nn.Upsample(scale_factor=2), # (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4) nn.Conv2d(512, 512, kernel_size=3, padding=1), # (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4) VAE_ResidualBlock(512, 512), # (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4) VAE_ResidualBlock(512, 512), # (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4) VAE_ResidualBlock(512, 512), # (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 2, Width / 2) nn.Upsample(scale_factor=2), # (Batch_Size, 512, Height / 2, Width / 2) -> (Batch_Size, 512, Height / 2, Width / 2) nn.Conv2d(512, 512, kernel_size=3, padding=1), # (Batch_Size, 512, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2) VAE_ResidualBlock(512, 256), # (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2) VAE_ResidualBlock(256, 256), # (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2) VAE_ResidualBlock(256, 256), # (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height, Width) nn.Upsample(scale_factor=2), # (Batch_Size, 256, Height, Width) -> (Batch_Size, 256, Height, Width) nn.Conv2d(256, 256, kernel_size=3, padding=1), # (Batch_Size, 256, Height, Width) -> (Batch_Size, 128, Height, Width) VAE_ResidualBlock(256, 128), # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width) VAE_ResidualBlock(128, 128), # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width) VAE_ResidualBlock(128, 128), # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width) nn.GroupNorm(32, 128), # (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width) nn.SiLU(), # (Batch_Size, 128, Height, Width) -> (Batch_Size, 3, Height, Width) nn.Conv2d(128, 3, kernel_size=3, padding=1), ) def forward(self, x): # x: (Batch_Size, 4, Height / 8, Width / 8) # Remove the scaling added by the Encoder. x /= 0.18215 for module in self: x = module(x) # (Batch_Size, 3, Height, Width) return x