import gradio as gr import spaces from transformers import PegasusForConditionalGeneration, PegasusTokenizer import torch device = 'cuda' model_name = "ailm/pegsus-text-summarization" model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device) tokenizer = PegasusTokenizer.from_pretrained(model_name) @spaces.GPU def summarize(text): tokens = tokenizer(text, truncation=True, padding="longest", return_tensors="pt").to(device) summary = model.generate(**tokens) return tokenizer.decode(summary[0], skip_special_tokens=True) iface = gr.Interface(fn=summarize, inputs="text", outputs="text") iface.launch()