from typing import List from transformers import AutoTokenizer, AutoModel import torch import os import numpy as np class EmbeddingsProcessor: """ Class for processing text to obtain embeddings using a transformer model. """ def __init__(self, model_name: str): """ Initialize the EmbeddingsProcessor with a pre-trained model. Args: model_name (str): The name of the pre-trained model to use for generating embeddings. """ self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModel.from_pretrained(model_name).to('cpu') # Change 'cuda' to 'cpu' def get_embeddings(self, texts: List[str]) -> np.ndarray: """ Generate embeddings for a list of texts. Args: texts (List[str]): A list of text strings for which to generate embeddings. Returns: np.ndarray: A NumPy array of embeddings for the provided texts. """ encoded_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt") encoded_input = {k: v.to('cpu') for k, v in encoded_input.items()} # Ensure all tensors are on CPU model_output = self.model(**encoded_input) return model_output.last_hidden_state.mean(dim=1).detach().numpy()