Spaces:
Running
Running
robertselvam
commited on
Commit
•
f0798cc
1
Parent(s):
d655551
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import os
|
3 |
+
import pdfplumber
|
4 |
+
from langchain.chains.mapreduce import MapReduceChain
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain.chains.summarize import load_summarize_chain
|
7 |
+
from langchain.chat_models import ChatOpenAI
|
8 |
+
from langchain.document_loaders import UnstructuredFileLoader
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
import logging
|
11 |
+
import json
|
12 |
+
from typing import List
|
13 |
+
import mimetypes
|
14 |
+
import validators
|
15 |
+
import requests
|
16 |
+
import tempfile
|
17 |
+
from bs4 import BeautifulSoup
|
18 |
+
from langchain.chains import create_extraction_chain
|
19 |
+
from GoogleNews import GoogleNews
|
20 |
+
import pandas as pd
|
21 |
+
import gradio as gr
|
22 |
+
import re
|
23 |
+
from langchain.document_loaders import WebBaseLoader
|
24 |
+
from langchain.chains.llm import LLMChain
|
25 |
+
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
26 |
+
from transformers import pipeline
|
27 |
+
import plotly.express as px
|
28 |
+
|
29 |
+
class KeyValueExtractor:
|
30 |
+
|
31 |
+
def __init__(self):
|
32 |
+
|
33 |
+
"""
|
34 |
+
Initialize the ContractSummarizer object.
|
35 |
+
|
36 |
+
Parameters:
|
37 |
+
pdf_file_path (str): The path to the input PDF file.
|
38 |
+
"""
|
39 |
+
self.model = "facebook/bart-large-mnli"
|
40 |
+
|
41 |
+
def get_news(self,keyword):
|
42 |
+
|
43 |
+
googlenews = GoogleNews(lang='en', region='US', period='1d', encode='utf-8')
|
44 |
+
googlenews.clear()
|
45 |
+
googlenews.search(keyword)
|
46 |
+
googlenews.get_page(2)
|
47 |
+
news_result = googlenews.result(sort=True)
|
48 |
+
news_data_df = pd.DataFrame.from_dict(news_result)
|
49 |
+
|
50 |
+
news_data_df.info()
|
51 |
+
|
52 |
+
# Display header of dataframe.
|
53 |
+
news_data_df.head()
|
54 |
+
|
55 |
+
tot_news_link = []
|
56 |
+
for index, headers in news_data_df.iterrows():
|
57 |
+
news_link = str(headers['link'])
|
58 |
+
tot_news_link.append(news_link)
|
59 |
+
|
60 |
+
return tot_news_link
|
61 |
+
|
62 |
+
def url_format(self,urls):
|
63 |
+
|
64 |
+
tot_url_links = []
|
65 |
+
for url_text in urls:
|
66 |
+
# Define a regex pattern to match URLs starting with 'http' or 'https'
|
67 |
+
pattern = r'(https?://[^\s]+)'
|
68 |
+
|
69 |
+
# Search for the URL in the text using the regex pattern
|
70 |
+
match = re.search(pattern, url_text)
|
71 |
+
|
72 |
+
if match:
|
73 |
+
extracted_url = match.group(1)
|
74 |
+
tot_url_links.append(extracted_url)
|
75 |
+
|
76 |
+
else:
|
77 |
+
print("No URL found in the given text.")
|
78 |
+
|
79 |
+
return tot_url_links
|
80 |
+
|
81 |
+
def clear_error_ulr(self,urls):
|
82 |
+
error_url = []
|
83 |
+
for url in urls:
|
84 |
+
if validators.url(url):
|
85 |
+
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
|
86 |
+
r = requests.get(url,headers=headers)
|
87 |
+
if r.status_code != 200:
|
88 |
+
# raise ValueError("Check the url of your file; returned status code %s" % r.status_code)
|
89 |
+
print(f"Error fetching {url}:")
|
90 |
+
error_url.append(url)
|
91 |
+
continue
|
92 |
+
cleaned_list_url = [item for item in urls if item not in error_url]
|
93 |
+
return cleaned_list_url
|
94 |
+
|
95 |
+
def get_each_link_summary(self,urls):
|
96 |
+
|
97 |
+
each_link_summary = ""
|
98 |
+
|
99 |
+
for url in urls:
|
100 |
+
loader = WebBaseLoader(url)
|
101 |
+
docs = loader.load()
|
102 |
+
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
103 |
+
chunk_size=3000, chunk_overlap=200
|
104 |
+
)
|
105 |
+
|
106 |
+
# Split the documents into chunks
|
107 |
+
split_docs = text_splitter.split_documents(docs)
|
108 |
+
|
109 |
+
# Prepare the prompt template for summarization
|
110 |
+
prompt_template = """Write a concise summary of the following:
|
111 |
+
{text}
|
112 |
+
CONCISE SUMMARY:"""
|
113 |
+
prompt = PromptTemplate.from_template(prompt_template)
|
114 |
+
|
115 |
+
# Prepare the template for refining the summary with additional context
|
116 |
+
refine_template = (
|
117 |
+
"Your job is to produce a final summary\n"
|
118 |
+
"We have provided an existing summary up to a certain point: {existing_answer}\n"
|
119 |
+
"We have the opportunity to refine the existing summary"
|
120 |
+
"(only if needed) with some more context below.\n"
|
121 |
+
"------------\n"
|
122 |
+
"{text}\n"
|
123 |
+
"------------\n"
|
124 |
+
"Given the new context, refine the original summary"
|
125 |
+
"If the context isn't useful, return the original summary."
|
126 |
+
)
|
127 |
+
refine_prompt = PromptTemplate.from_template(refine_template)
|
128 |
+
|
129 |
+
# Load the summarization chain using the ChatOpenAI language model
|
130 |
+
chain = load_summarize_chain(
|
131 |
+
llm = ChatOpenAI(temperature=0),
|
132 |
+
chain_type="refine",
|
133 |
+
question_prompt=prompt,
|
134 |
+
refine_prompt=refine_prompt,
|
135 |
+
return_intermediate_steps=True,
|
136 |
+
input_key="input_documents",
|
137 |
+
output_key="output_text",
|
138 |
+
)
|
139 |
+
|
140 |
+
# Generate the refined summary using the loaded summarization chain
|
141 |
+
result = chain({"input_documents": split_docs}, return_only_outputs=True)
|
142 |
+
print(result["output_text"])
|
143 |
+
|
144 |
+
# Return the refined summary
|
145 |
+
each_link_summary = each_link_summary + result["output_text"]
|
146 |
+
|
147 |
+
return each_link_summary
|
148 |
+
|
149 |
+
def save_text_to_file(self,each_link_summary) -> str:
|
150 |
+
|
151 |
+
"""
|
152 |
+
Load the text from the saved file and split it into documents.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
List[str]: List of document texts.
|
156 |
+
"""
|
157 |
+
|
158 |
+
# Get the path to the text file where the extracted text will be saved
|
159 |
+
file_path = "extracted_text.txt"
|
160 |
+
try:
|
161 |
+
with open(file_path, 'w') as file:
|
162 |
+
# Write the extracted text into the text file
|
163 |
+
file.write(each_link_summary)
|
164 |
+
# Return the file path of the saved text file
|
165 |
+
return file_path
|
166 |
+
except IOError as e:
|
167 |
+
# If an IOError occurs during the file saving process, log the error
|
168 |
+
logging.error(f"Error while saving text to file: {e}")
|
169 |
+
|
170 |
+
def document_loader(self,file_path) -> List[str]:
|
171 |
+
|
172 |
+
"""
|
173 |
+
Load the text from the saved file and split it into documents.
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
List[str]: List of document texts.
|
177 |
+
"""
|
178 |
+
|
179 |
+
# Initialize the UnstructuredFileLoader
|
180 |
+
loader = UnstructuredFileLoader(file_path, strategy="fast")
|
181 |
+
# Load the documents from the file
|
182 |
+
docs = loader.load()
|
183 |
+
|
184 |
+
# Return the list of loaded document texts
|
185 |
+
return docs
|
186 |
+
|
187 |
+
def document_text_spilliter(self,docs) -> List[str]:
|
188 |
+
|
189 |
+
"""
|
190 |
+
Split documents into chunks for efficient processing.
|
191 |
+
|
192 |
+
Returns:
|
193 |
+
List[str]: List of split document chunks.
|
194 |
+
"""
|
195 |
+
|
196 |
+
# Initialize the text splitter with specified chunk size and overlap
|
197 |
+
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
198 |
+
chunk_size=3000, chunk_overlap=200
|
199 |
+
)
|
200 |
+
|
201 |
+
# Split the documents into chunks
|
202 |
+
split_docs = text_splitter.split_documents(docs)
|
203 |
+
|
204 |
+
# Return the list of split document chunks
|
205 |
+
return split_docs
|
206 |
+
|
207 |
+
def extract_key_value_pair(self,content) -> None:
|
208 |
+
|
209 |
+
"""
|
210 |
+
Extract key-value pairs from the refined summary.
|
211 |
+
|
212 |
+
Prints the extracted key-value pairs.
|
213 |
+
"""
|
214 |
+
|
215 |
+
try:
|
216 |
+
|
217 |
+
# Use OpenAI's Completion API to analyze the text and extract key-value pairs
|
218 |
+
response = openai.Completion.create(
|
219 |
+
engine="text-davinci-003", # You can choose a different engine as well
|
220 |
+
temperature = 0,
|
221 |
+
prompt=f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```.",
|
222 |
+
max_tokens=1000 # You can adjust the length of the response
|
223 |
+
)
|
224 |
+
|
225 |
+
# Extract and return the chatbot's reply
|
226 |
+
result = response['choices'][0]['text'].strip()
|
227 |
+
return result
|
228 |
+
except Exception as e:
|
229 |
+
# If an error occurs during the key-value extraction process, log the error
|
230 |
+
logging.error(f"Error while extracting key-value pairs: {e}")
|
231 |
+
print("Error:", e)
|
232 |
+
|
233 |
+
def refine_summary(self,split_docs) -> str:
|
234 |
+
|
235 |
+
"""
|
236 |
+
Refine the summary using the provided context.
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
str: Refined summary.
|
240 |
+
"""
|
241 |
+
|
242 |
+
# Prepare the prompt template for summarization
|
243 |
+
prompt_template = """Write a detalied broad abractive summary of the following:
|
244 |
+
{text}
|
245 |
+
CONCISE SUMMARY:"""
|
246 |
+
prompt = PromptTemplate.from_template(prompt_template)
|
247 |
+
|
248 |
+
# Prepare the template for refining the summary with additional context
|
249 |
+
refine_template = (
|
250 |
+
"Your job is to produce a final summary\n"
|
251 |
+
"We have provided an existing summary up to a certain point: {existing_answer}\n"
|
252 |
+
"We have the opportunity to refine the existing summary"
|
253 |
+
"(only if needed) with some more context below.\n"
|
254 |
+
"------------\n"
|
255 |
+
"{text}\n"
|
256 |
+
"------------\n"
|
257 |
+
"Given the new context, refine the original summary"
|
258 |
+
"If the context isn't useful, return the original summary."
|
259 |
+
)
|
260 |
+
refine_prompt = PromptTemplate.from_template(refine_template)
|
261 |
+
|
262 |
+
# Load the summarization chain using the ChatOpenAI language model
|
263 |
+
chain = load_summarize_chain(
|
264 |
+
llm = ChatOpenAI(temperature=0),
|
265 |
+
chain_type="refine",
|
266 |
+
question_prompt=prompt,
|
267 |
+
refine_prompt=refine_prompt,
|
268 |
+
return_intermediate_steps=True,
|
269 |
+
input_key="input_documents",
|
270 |
+
output_key="output_text",
|
271 |
+
)
|
272 |
+
|
273 |
+
# Generate the refined summary using the loaded summarization chain
|
274 |
+
result = chain({"input_documents": split_docs}, return_only_outputs=True)
|
275 |
+
|
276 |
+
key_value_pair = self.extract_key_value_pair(result["output_text"])
|
277 |
+
|
278 |
+
# Return the refined summary
|
279 |
+
return result["output_text"],key_value_pair
|
280 |
+
|
281 |
+
def analyze_sentiment_for_graph(self, text):
|
282 |
+
pipe = pipeline("zero-shot-classification", model=self.model)
|
283 |
+
label=["Positive", "Negative", "Neutral"]
|
284 |
+
result = pipe(text, label)
|
285 |
+
sentiment_scores = {
|
286 |
+
result['labels'][0]: result['scores'][0],
|
287 |
+
result['labels'][1]: result['scores'][1],
|
288 |
+
result['labels'][2]: result['scores'][2]
|
289 |
+
}
|
290 |
+
return sentiment_scores
|
291 |
+
|
292 |
+
def display_graph(self,text):
|
293 |
+
|
294 |
+
sentiment_scores = self.analyze_sentiment_for_graph(text)
|
295 |
+
labels = sentiment_scores.keys()
|
296 |
+
scores = sentiment_scores.values()
|
297 |
+
fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"})
|
298 |
+
fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside')
|
299 |
+
fig.update_layout(title="Sentiment Analysis",width=800)
|
300 |
+
|
301 |
+
formatted_pairs = []
|
302 |
+
for key, value in sentiment_scores.items():
|
303 |
+
formatted_value = round(value, 2) # Round the value to two decimal places
|
304 |
+
formatted_pairs.append(f"{key} : {formatted_value}")
|
305 |
+
|
306 |
+
result_string = '\t'.join(formatted_pairs)
|
307 |
+
|
308 |
+
return fig
|
309 |
+
|
310 |
+
def main(self,keyword):
|
311 |
+
|
312 |
+
urls = self.get_news(keyword)
|
313 |
+
tot_urls = self.url_format(urls)
|
314 |
+
clean_url = self.clear_error_ulr(tot_urls)
|
315 |
+
each_link_summary = self.get_each_link_summary(clean_url)
|
316 |
+
file_path = self.save_text_to_file(each_link_summary)
|
317 |
+
docs = self.document_loader(file_path)
|
318 |
+
split_docs = self.document_text_spilliter(docs)
|
319 |
+
result = self.refine_summary(split_docs)
|
320 |
+
|
321 |
+
|
322 |
+
return result
|
323 |
+
|
324 |
+
def gradio_interface(self):
|
325 |
+
|
326 |
+
with gr.Blocks(css="style.css",theme= 'karthikeyan-adople/hudsonhayes-gray') as app:
|
327 |
+
gr.HTML("""<center class="darkblue" style='background-color:rgb(0,1,36); text-align:center;padding:25px;'><center><h1 class ="center">
|
328 |
+
<img src="file=logo.png" height="110px" width="280px"></h1></center>
|
329 |
+
<br><h1 style="color:#fff">summarizer</h1></center>""")
|
330 |
+
with gr.Row(elem_id="col-container"):
|
331 |
+
with gr.Column(scale=1.0, min_width=150, ):
|
332 |
+
input_news = gr.Textbox(label="NEWS")
|
333 |
+
with gr.Row(elem_id="col-container"):
|
334 |
+
with gr.Column(scale=1.0, min_width=150):
|
335 |
+
analyse = gr.Button("Analyse")
|
336 |
+
with gr.Row(elem_id="col-container"):
|
337 |
+
with gr.Column(scale=0.50, min_width=150):
|
338 |
+
result_summary = gr.Textbox(label="Summary")
|
339 |
+
with gr.Column(scale=0.50, min_width=150):
|
340 |
+
key_value_pair_result = gr.Textbox(label="Key Value Pair")
|
341 |
+
with gr.Row(elem_id="col-container"):
|
342 |
+
with gr.Column(scale=0.70, min_width=0):
|
343 |
+
plot =gr.Plot(label="Customer", size=(500, 600))
|
344 |
+
with gr.Row(elem_id="col-container"):
|
345 |
+
with gr.Column(scale=1.0, min_width=150):
|
346 |
+
analyse_sentiment = gr.Button("Analyse")
|
347 |
+
|
348 |
+
analyse.click(self.main, input_news, [result_summary,key_value_pair_result])
|
349 |
+
analyse_sentiment.click(self.display_graph,result_summary,[plot])
|
350 |
+
|
351 |
+
app.launch(debug=True)
|
352 |
+
|
353 |
+
if __name__ == "__main__":
|
354 |
+
|
355 |
+
text_process = KeyValueExtractor()
|
356 |
+
text_process.gradio_interface()
|