Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,75 @@
|
|
1 |
-
import random
|
2 |
-
import os
|
3 |
-
import uuid
|
4 |
-
from datetime import datetime
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
|
|
7 |
import torch
|
8 |
from diffusers import DiffusionPipeline
|
9 |
-
from PIL import Image
|
10 |
import warnings
|
|
|
|
|
|
|
11 |
|
12 |
# ๊ฒฝ๊ณ ๋ฉ์์ง ์จ๊ธฐ๊ธฐ
|
13 |
warnings.filterwarnings('ignore', category=UserWarning)
|
14 |
|
15 |
-
# ์ ์ฅ ๋๋ ํ ๋ฆฌ ์์ฑ
|
16 |
SAVE_DIR = "saved_images"
|
17 |
if not os.path.exists(SAVE_DIR):
|
18 |
os.makedirs(SAVE_DIR, exist_ok=True)
|
19 |
|
20 |
-
# ์ฅ์น ์ค์
|
|
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
# ๋ชจ๋ธ ๋ก๋
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
MAX_IMAGE_SIZE = 2048
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Enhanced examples with more detailed prompts and specific styling
|
32 |
EXAMPLES = [
|
33 |
{
|
@@ -257,43 +299,85 @@ def generate_diagram(prompt, width=1024, height=1024):
|
|
257 |
except Exception as e:
|
258 |
raise gr.Error(f"๋ค์ด์ด๊ทธ๋จ ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
# Gradio ์ธํฐํ์ด์ค ์์ฑ
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
)
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
- ๊ฐ๊ฒฐํ๊ณ ์๋ฏธ ์๋ ํ
์คํธ ์ฌ์ฉ
|
292 |
-
- ์ผ๊ด๋ ํ์ ์ ์ง
|
293 |
-
""",
|
294 |
-
examples=GRADIO_EXAMPLES,
|
295 |
-
cache_examples=True
|
296 |
-
)
|
297 |
|
298 |
# ์ฑ ์คํ
|
299 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import random
|
4 |
import torch
|
5 |
from diffusers import DiffusionPipeline
|
|
|
6 |
import warnings
|
7 |
+
import os
|
8 |
+
from datetime import datetime
|
9 |
+
import uuid
|
10 |
|
11 |
# ๊ฒฝ๊ณ ๋ฉ์์ง ์จ๊ธฐ๊ธฐ
|
12 |
warnings.filterwarnings('ignore', category=UserWarning)
|
13 |
|
14 |
+
# ์ ์ฅ ๋๋ ํ ๋ฆฌ ์์ฑ
|
15 |
SAVE_DIR = "saved_images"
|
16 |
if not os.path.exists(SAVE_DIR):
|
17 |
os.makedirs(SAVE_DIR, exist_ok=True)
|
18 |
|
19 |
+
# ์ฅ์น ๋ฐ dtype ์ค์
|
20 |
+
dtype = torch.float32 if torch.cuda.is_available() else torch.float32
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
# ๋ชจ๋ธ ๋ก๋
|
24 |
+
pipe = DiffusionPipeline.from_pretrained(
|
25 |
+
"black-forest-labs/FLUX.1-schnell",
|
26 |
+
torch_dtype=dtype,
|
27 |
+
device_map="auto",
|
28 |
+
use_safetensors=True
|
29 |
+
).to(device)
|
30 |
+
|
31 |
+
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ
|
32 |
+
pipe.enable_attention_slicing()
|
33 |
+
if device == "cpu":
|
34 |
+
pipe.enable_sequential_cpu_offload()
|
35 |
|
36 |
MAX_SEED = np.iinfo(np.int32).max
|
37 |
MAX_IMAGE_SIZE = 2048
|
38 |
|
39 |
+
def generate_diagram(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4):
|
40 |
+
"""FLUX AI๋ฅผ ์ฌ์ฉํ์ฌ ๋ค์ด์ด๊ทธ๋จ ์์ฑ"""
|
41 |
+
try:
|
42 |
+
if randomize_seed:
|
43 |
+
seed = random.randint(0, MAX_SEED)
|
44 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
image = pipe(
|
48 |
+
prompt=prompt,
|
49 |
+
width=width,
|
50 |
+
height=height,
|
51 |
+
num_inference_steps=num_inference_steps,
|
52 |
+
generator=generator,
|
53 |
+
guidance_scale=0.0
|
54 |
+
).images[0]
|
55 |
+
|
56 |
+
# ์ด๋ฏธ์ง ์ ์ฅ
|
57 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
58 |
+
unique_id = str(uuid.uuid4())[:8]
|
59 |
+
filename = f"diagram_{timestamp}_{unique_id}.png"
|
60 |
+
save_path = os.path.join(SAVE_DIR, filename)
|
61 |
+
image.save(save_path)
|
62 |
+
|
63 |
+
return image, seed
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
raise gr.Error(f"๋ค์ด์ด๊ทธ๋จ ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
67 |
+
finally:
|
68 |
+
if torch.cuda.is_available():
|
69 |
+
torch.cuda.empty_cache()
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
# Enhanced examples with more detailed prompts and specific styling
|
74 |
EXAMPLES = [
|
75 |
{
|
|
|
299 |
except Exception as e:
|
300 |
raise gr.Error(f"๋ค์ด์ด๊ทธ๋จ ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
301 |
|
302 |
+
# CSS ์คํ์ผ
|
303 |
+
css="""
|
304 |
+
#col-container {
|
305 |
+
margin: 0 auto;
|
306 |
+
max-width: 520px;
|
307 |
+
}
|
308 |
+
"""
|
309 |
+
|
310 |
# Gradio ์ธํฐํ์ด์ค ์์ฑ
|
311 |
+
with gr.Blocks(css=css) as demo:
|
312 |
+
with gr.Column(elem_id="col-container"):
|
313 |
+
gr.Markdown("""# FLUX ๋ค์ด์ด๊ทธ๋จ ์์ฑ๊ธฐ
|
314 |
+
FLUX AI๋ฅผ ์ฌ์ฉํ์ฌ ์๋ฆ๋ค์ด ์๊ทธ๋ฆผ ์คํ์ผ์ ๋ค์ด์ด๊ทธ๋จ์ ์์ฑํฉ๋๋ค
|
315 |
+
""")
|
316 |
+
|
317 |
+
with gr.Row():
|
318 |
+
prompt = gr.Text(
|
319 |
+
label="ํ๋กฌํํธ",
|
320 |
+
show_label=False,
|
321 |
+
max_lines=1,
|
322 |
+
placeholder="๋ค์ด์ด๊ทธ๋จ ๊ตฌ์กฐ๋ฅผ ์
๋ ฅํ์ธ์...",
|
323 |
+
container=False,
|
324 |
+
)
|
325 |
+
run_button = gr.Button("์์ฑ", scale=0)
|
326 |
+
|
327 |
+
result = gr.Image(label="์์ฑ๋ ๋ค์ด์ด๊ทธ๋จ", show_label=False)
|
328 |
+
|
329 |
+
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False):
|
330 |
+
seed = gr.Slider(
|
331 |
+
label="์๋",
|
332 |
+
minimum=0,
|
333 |
+
maximum=MAX_SEED,
|
334 |
+
step=1,
|
335 |
+
value=0,
|
336 |
+
)
|
337 |
+
|
338 |
+
randomize_seed = gr.Checkbox(label="๋๋ค ์๋", value=True)
|
339 |
+
|
340 |
+
with gr.Row():
|
341 |
+
width = gr.Slider(
|
342 |
+
label="๋๋น",
|
343 |
+
minimum=256,
|
344 |
+
maximum=MAX_IMAGE_SIZE,
|
345 |
+
step=32,
|
346 |
+
value=1024,
|
347 |
+
)
|
348 |
+
|
349 |
+
height = gr.Slider(
|
350 |
+
label="๋์ด",
|
351 |
+
minimum=256,
|
352 |
+
maximum=MAX_IMAGE_SIZE,
|
353 |
+
step=32,
|
354 |
+
value=1024,
|
355 |
+
)
|
356 |
+
|
357 |
+
num_inference_steps = gr.Slider(
|
358 |
+
label="์ถ๋ก ๋จ๊ณ ์",
|
359 |
+
minimum=1,
|
360 |
+
maximum=50,
|
361 |
+
step=1,
|
362 |
+
value=4,
|
363 |
+
)
|
364 |
+
|
365 |
+
# ์์ ์ถ๊ฐ
|
366 |
+
gr.Examples(
|
367 |
+
examples=EXAMPLES, # ์ด์ ์ ์ ์๋ ์์ ๋ค ์ฌ์ฉ
|
368 |
+
fn=generate_diagram,
|
369 |
+
inputs=[prompt],
|
370 |
+
outputs=[result, seed],
|
371 |
+
cache_examples=True
|
372 |
)
|
373 |
+
|
374 |
+
# ์ด๋ฒคํธ ํธ๋ค๋ฌ
|
375 |
+
gr.on(
|
376 |
+
triggers=[run_button.click, prompt.submit],
|
377 |
+
fn=generate_diagram,
|
378 |
+
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
|
379 |
+
outputs=[result, seed]
|
380 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
|
382 |
# ์ฑ ์คํ
|
383 |
if __name__ == "__main__":
|