import json import logging import os import urllib.parse from typing import Any import gradio as gr import requests from gradio_huggingfacehub_search import HuggingfaceHubSearch logger = logging.getLogger(__name__) example = HuggingfaceHubSearch().example_value() HEADER_CONTENT = ( "# 🤗 Dataset DuckDB Query Chatbot\n\n" "This is a basic text to SQL tool that allows you to query datasets on Hugging Face Hub. " "It's a fork of " "[davidberenstein1957/text-to-sql-hub-datasets](https://huggingface.co/spaces/davidberenstein1957/text-to-sql-hub-datasets) " "that adds chat capability and table name generation." ) ABOUT_CONTENT = """ This space uses [LLama 3.1 70B](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct). via [together.ai](https://together.ai) Also, it uses the [dataset-server API](https://redocly.github.io/redoc/?url=https://datasets-server.huggingface.co/openapi.json#operation/isValidDataset). Query history is saved and given to the chat model so you can chat to refine your query as you go. When the DuckDB modal is presented, you may need to click on the name of the config/split at the base of the modal to get the table loaded for DuckDB's use. Search for and select a dataset to begin. """ SYSTEM_PROMPT_TEMPLATE = ( "You are a SQL query expert assistant that returns a DuckDB SQL queries " "based on the user's natural language query and dataset features. " "You might need to use DuckDB functions for lists and aggregations, " "given the features. Only return the SQL query, no other text. The " "user may ask you to make various adjustments to the query. Every " "time your response should only include the refined SQL query and " "nothing else.\n\n" "The table being queried is named: {table_name}.\n\n" "# Features\n" "{features}" ) def get_iframe(hub_repo_id, sql_query=None): if not hub_repo_id: raise ValueError("Hub repo id is required") if sql_query: sql_query = urllib.parse.quote(sql_query) url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer?sql_console=true&sql={sql_query}" else: url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer" iframe = f""" """ return iframe def get_table_info(hub_repo_id): url: str = f"https://datasets-server.huggingface.co/info?dataset={hub_repo_id}" response = requests.get(url) try: data = response.json() data = data.get("dataset_info") return json.dumps(data) except Exception as e: gr.Error(f"Error getting column info: {e}") def get_table_name( config: str | None, split: str | None, config_choices: list[str], split_choices: list[str], ): if len(config_choices) > 0 and config is None: config = config_choices[0] if len(split_choices) > 0 and split is None: split = split_choices[0] if len(config_choices) > 1 and len(split_choices) > 1: base_name = f"{config}_{split}" elif len(config_choices) >= 1 and len(split_choices) <= 1: base_name = config else: base_name = split def replace_char(c): if c.isalnum(): return c if c in ["-", "_", "/"]: return "_" return "" table_name = "".join(replace_char(c) for c in base_name) if table_name[0].isdigit(): table_name = f"_{table_name}" return table_name.lower() def get_system_prompt( card_data: dict[str, Any], config: str | None, split: str | None, ): config_choices = get_config_choices(card_data) split_choices = get_split_choices(card_data) table_name = get_table_name(config, split, config_choices, split_choices) features = card_data[config]["features"] return SYSTEM_PROMPT_TEMPLATE.format( table_name=table_name, features=features, ) def get_config_choices(card_data: dict[str, Any]) -> list[str]: return list(card_data.keys()) def get_split_choices(card_data: dict[str, Any]) -> list[str]: splits = set() for config in card_data.values(): splits.update(config.get("splits", {}).keys()) return list(splits) def query_dataset(hub_repo_id, card_data, query, config, split, history): if card_data is None or len(card_data) == 0: if hub_repo_id: iframe = get_iframe(hub_repo_id) else: iframe = "

No dataset selected.

" return "", iframe, [], "" card_data = json.loads(card_data) system_prompt = get_system_prompt(card_data, config, split) messages = [{"role": "system", "content": system_prompt}] for turn in history: user, assistant = turn messages.append( { "role": "user", "content": user, } ) messages.append( { "role": "assistant", "content": assistant, } ) messages.append( { "role": "user", "content": query, } ) api_key = os.environ["API_KEY_TOGETHER_AI"].strip() response = requests.post( "https://api.together.xyz/v1/chat/completions", json=dict( model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo", messages=messages, max_tokens=1000, ), headers={"Authorization": f"Bearer {api_key}"}, ) if response.status_code != 200: logger.warning(response.text) try: response.raise_for_status() except Exception as e: gr.Error(f"Could not query LLM for suggestion: {e}") response_dict = response.json() duck_query = response_dict["choices"][0]["message"]["content"] duck_query = _sanitize_duck_query(duck_query) history.append((query, duck_query)) return duck_query, get_iframe(hub_repo_id, duck_query), history, "" def _sanitize_duck_query(duck_query: str) -> str: # Sometimes the LLM wraps the query like this: # ```sql # select * from x; # ``` # This removes that wrapping if present. if "```" not in duck_query: return duck_query start_idx = duck_query.index("```") + len("```") end_idx = duck_query.rindex("```") duck_query = duck_query[start_idx:end_idx] if duck_query.startswith("sql\n"): duck_query = duck_query.replace("sql\n", "", 1) return duck_query with gr.Blocks() as demo: gr.Markdown(HEADER_CONTENT) with gr.Accordion("About/Help", open=False): gr.Markdown(ABOUT_CONTENT) with gr.Row(): search_in = HuggingfaceHubSearch( label="Search Hugging Face Hub", placeholder="Search for models on Huggingface", search_type="dataset", sumbit_on_select=True, ) with gr.Row(): show_btn = gr.Button("Show Dataset") with gr.Row(): sql_out = gr.Code( label="DuckDB SQL Query", interactive=True, language="sql", lines=1, visible=False, ) with gr.Row(): card_data = gr.Code(label="Card data", language="json", visible=False) @gr.render(inputs=[card_data]) def show_config_split_choices(data): try: data = json.loads(data.strip()) config_choices = get_config_choices(data) split_choices = get_split_choices(data) except Exception: config_choices = [] split_choices = [] initial_config = config_choices[0] if len(config_choices) > 0 else None initial_split = split_choices[0] if len(split_choices) > 0 else None with gr.Row(): with gr.Column(): config_selection = gr.Dropdown( label="Config Name", choices=config_choices, value=initial_config ) with gr.Column(): split_selection = gr.Dropdown( label="Split Name", choices=split_choices, value=initial_split ) with gr.Accordion("Query Suggestion History.", open=False) as accordion: chatbot = gr.Chatbot(height=200, layout="bubble") with gr.Row(): query = gr.Textbox( label="Query Description", placeholder="Enter a natural language query to generate SQL", ) with gr.Row(): with gr.Column(): query_btn = gr.Button("Get Suggested Query") with gr.Column(): clear = gr.ClearButton([query, chatbot], value="Reset Query History") with gr.Row(): search_out = gr.HTML(label="Search Results") gr.on( [show_btn.click, search_in.submit], fn=get_iframe, inputs=[search_in], outputs=[search_out], ).then( fn=get_table_info, inputs=[search_in], outputs=[card_data], ) gr.on( [query_btn.click, query.submit], fn=query_dataset, inputs=[ search_in, card_data, query, config_selection, split_selection, chatbot, ], outputs=[sql_out, search_out, chatbot, query], ) gr.on([query_btn.click], fn=lambda: gr.update(open=True), outputs=[accordion]) if __name__ == "__main__": demo.launch()