import gradio as gr import spaces from mistral_inference.transformer import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk from mistral_common.protocol.instruct.request import ChatCompletionRequest from huggingface_hub import snapshot_download from pathlib import Path # モデルのダウンロードと準備 mistral_models_path = Path.home().joinpath('mistral_models', 'Pixtral') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistral-community/pixtral-12b-240910", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) # トークナイザーとモデルのロード tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json") model = Transformer.from_folder(mistral_models_path) # 推論処理 @spaces.GPU def mistral_inference(prompt, image_url): completion_request = ChatCompletionRequest( messages=[UserMessage(content=[ImageURLChunk(image_url=image_url), TextChunk(text=prompt)])] ) encoded = tokenizer.encode_chat_completion(completion_request) images = encoded.images tokens = encoded.tokens out_tokens, _ = generate([tokens], model, images=[images], max_tokens=1024, temperature=0.35, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.decode(out_tokens[0]) return result # 言語によるUIラベルの設定 def get_labels(language): labels = { 'en': { 'title': "Pixtral Model Image Description", 'text_prompt': "Text Prompt", 'image_url': "Image URL", 'output': "Model Output", 'image_display': "Input Image", 'submit': "Run Inference" }, 'zh': { 'title': "Pixtral模型图像描述", 'text_prompt': "文本提示", 'image_url': "图片网址", 'output': "模型输出", 'image_display': "输入图片", 'submit': "运行推理" }, 'jp': { 'title': "Pixtralモデルによる画像説明生成", 'text_prompt': "テキストプロンプト", 'image_url': "画像URL", 'output': "モデルの出力結果", 'image_display': "入力された画像", 'submit': "推論を実行" } } return labels[language] # Gradioインターフェース def process_input(text, image_url): result = mistral_inference(text, image_url) return result, f'Input Image' def update_ui(language): labels = get_labels(language) return labels['title'], labels['text_prompt'], labels['image_url'], labels['output'], labels['image_display'], labels['submit'] # 初期URL initial_url = "https://huggingface.co/spaces/aixsatoshi/Pixtral-12B/resolve/main/llamagiant.jpg" with gr.Blocks() as demo: language_choice = gr.Dropdown(choices=['en', 'zh', 'jp'], label="Select Language", value='en') title = gr.Markdown("## Pixtral Model Image Description") with gr.Row(): text_input = gr.Textbox(label="Text Prompt", placeholder="e.g. Describe the image.") image_input = gr.Textbox(label="Image URL", value=initial_url) # 初期URLを設定 # 初期画像を表示 result_output = gr.Textbox(label="Model Output", lines=8, max_lines=20) # 高さ500ピクセルに相当するように調整 image_output = gr.HTML(f'Input Image') # 入力された画像を最初から表示 submit_button = gr.Button("Run Inference") submit_button.click(process_input, inputs=[text_input, image_input], outputs=[result_output, image_output]) # 言語変更時にUIラベルを更新 language_choice.change( fn=update_ui, inputs=[language_choice], outputs=[title, text_input, image_input, result_output, image_output, submit_button] ) # 例の設定 examples = [ ["Describe the scene.", "https://assets.st-note.com/production/uploads/images/138094970/rectangle_large_type_2_bc1a73623dc0e9bf8799832ddb4cd53e.png"], ["Describe the image.", "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"], ["Describe the random generated image.", "https://picsum.photos/seed/picsum/200/300"], ["Describe the image.", "https://picsum.photos/id/32/512/512"] ] gr.Examples(examples=examples, inputs=[text_input, image_input], label="Example Inputs") demo.launch()