# Copyright (C) 2025 Anthony Casagrande # Ultralytics YOLO 🚀, AGPL-3.0 license import gradio as gr import PIL.Image as Image from ultralytics import ASSETS, YOLO model = None def predict_image(img, conf_threshold, iou_threshold, model_name): """Predicts objects in an image using a YOLOv11 model with adjustable confidence and IOU thresholds.""" model = YOLO("train29s.pt") results = model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=1280, ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) return im iface = gr.Interface( fn=predict_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), # gr.Radio(choices=["yolo11n", "yolo11s", "yolo11n-seg", "yolo11s-seg", "yolo11n-pose", "yolo11s-pose"], label="Model Name", value="yolo11n"), ], outputs=gr.Image(type="pil", label="Result"), title="RC Race Vision Gradio Application 🚀", description="Upload images for inference. The RC Race Vision model is used by default.", examples=[ [ASSETS / "bus.jpg", 0.25, 0.45, "yolo11n.pt"], [ASSETS / "zidane.jpg", 0.25, 0.45, "yolo11n.pt"], ], ) iface.launch(share=True)