File size: 8,221 Bytes
b7137b1
 
 
 
afd47cf
b72b8d9
167f69d
b7137b1
 
68f2100
3b3fa96
b7137b1
 
 
6f4ba26
 
b7137b1
 
 
 
 
 
 
 
 
b9fa3c7
b7137b1
 
 
08b9f95
ecce248
 
b7137b1
 
 
a03c359
b7137b1
 
424d29e
1c53eb1
c6d5fcb
 
 
 
1f4b5d0
b7137b1
f8dc81b
a03c359
 
424d29e
a03c359
b7137b1
1f4b5d0
 
b7137b1
 
de31505
 
293e817
 
2406613
b9fa3c7
2406613
b7137b1
f8dc81b
b7137b1
1c53eb1
f8dc81b
b7137b1
 
 
b9f419a
 
f8dc81b
b9f419a
d1b63cc
41b19ce
d1b63cc
b9f419a
 
 
d1b63cc
b9f419a
 
 
 
 
 
 
 
3f2b07b
7190b6a
d1b63cc
7190b6a
d9f055f
3f2b07b
7190b6a
d1b63cc
7190b6a
3eb018f
d9f055f
caf6c21
815063d
d1b63cc
 
 
caf6c21
c273b5f
d1b63cc
 
 
3f2b07b
0e5769d
d1b63cc
 
 
b9f419a
77d733c
d1357c0
181a8b0
7190b6a
6f5d2d2
d1b63cc
 
 
 
 
 
 
 
 
b7137b1
6f5d2d2
d1b63cc
 
eb9cce7
a340b6b
68f2100
6f5d2d2
e43761d
b7137b1
8a3b8f4
f0a51d8
cae21f4
6f5d2d2
1cfaf5b
d1b63cc
167f69d
6f5d2d2
d1b63cc
d1357c0
 
d1b63cc
8a3b8f4
a7a3b55
 
 
 
3eb018f
 
fde541a
b9f419a
b7137b1
6f5d2d2
 
 
b7137b1
6f5d2d2
 
 
316bafd
 
6f5d2d2
b7137b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import time
import streamlit as st
import torch
import string



from transformers import BertTokenizer, BertForMaskedLM

st.set_page_config(page_title='Compare pretrained BERT models qualitatively', page_icon=None, layout='centered', initial_sidebar_state='auto')

@st.cache()
def load_bert_model(model_name):
  try:
    bert_tokenizer = BertTokenizer.from_pretrained(model_name,do_lower_case
    =False)
    bert_model = BertForMaskedLM.from_pretrained(model_name).eval()
    return bert_tokenizer,bert_model
  except Exception as e:
    pass



  
def decode(tokenizer, pred_idx, top_clean):
  ignore_tokens = string.punctuation
  tokens = []
  for w in pred_idx:
    token = ''.join(tokenizer.decode(w).split())
    if token not in ignore_tokens and len(token) > 1 and not token.startswith('.') and not token.startswith('['):
      #tokens.append(token.replace('##', ''))
      tokens.append(token)
  return '\n'.join(tokens[:top_clean])

def encode(tokenizer, text_sentence, add_special_tokens=True):
  
  text_sentence = text_sentence.replace('<mask>', tokenizer.mask_token)

  tokenized_text = tokenizer.tokenize(text_sentence) 
  input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)])
  if (tokenizer.mask_token in text_sentence.split()):
    mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0]
  else:
    mask_idx = 0
  return input_ids, mask_idx,tokenized_text

def get_all_predictions(text_sentence, model_name,top_clean=5):
  bert_tokenizer = st.session_state['bert_tokenizer']
  bert_model = st.session_state['bert_model']
  top_k = st.session_state['top_k']
  
    # ========================= BERT =================================
  input_ids, mask_idx,tokenized_text = encode(bert_tokenizer, text_sentence)
   
  with torch.no_grad():
    predict = bert_model(input_ids)[0]
  bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k*10).indices.tolist(), top_clean)
  cls = decode(bert_tokenizer, predict[0, 0, :].topk(top_k*10).indices.tolist(), top_clean)
  
  if ("[MASK]" in text_sentence or "<mask>" in text_sentence):
    return {'Input sentence':text_sentence,'Tokenized text': tokenized_text, 'results_count':top_k,'Model':model_name,'Masked position': bert,'[CLS]':cls}
  else:
    return {'Input sentence':text_sentence,'Tokenized text': tokenized_text,'results_count':top_k,'Model':model_name,'[CLS]':cls}

def get_bert_prediction(input_text,top_k,model_name):
  try:
    #input_text += ' <mask>'
    res = get_all_predictions(input_text,model_name, top_clean=int(top_k))
    return res
  except Exception as error:
    pass
    
 
def run_test(sent,top_k,model_name):
  start = None
  if (st.session_state['bert_tokenizer'] is None):
        st.info("Loading model:" + st.session_state['model_name'])
        st.session_state['bert_tokenizer'], st.session_state['bert_model']  = load_bert_model(st.session_state['model_name'])
  with st.spinner("Computing"):
          start = time.time()
          try:
            res = get_bert_prediction(sent,st.session_state['top_k'],st.session_state['model_name'])
            st.caption("Results in JSON")
            st.json(res)
            
          except Exception as e:
            st.error("Some error occurred during prediction" + str(e))
            st.stop()
  if start is not None:
    st.text(f"prediction took {time.time() - start:.2f}s")
    
def on_text_change():

  text = st.session_state.my_text
  run_test(text,st.session_state['top_k'],st.session_state['model_name'])

def on_option_change():

  text = st.session_state.my_choice
  #st.info("Preselected text chosen:" + text)
  run_test(text,st.session_state['top_k'],st.session_state['model_name'])
  
def on_results_count_change():

   st.session_state['top_k'] = int(st.session_state.my_slider)
   st.info("Results count changed " + str(st.session_state['top_k']))

def on_model_change1():
  st.session_state['model_name'] = st.session_state.my_model1
  st.info("Pre-selected model chosen: " + st.session_state['model_name'])
  st.session_state['bert_tokenizer'], st.session_state['bert_model']  = load_bert_model(st.session_state['model_name'])

def on_model_change2(): 
  st.session_state['model_name'] = st.session_state.my_model2
  st.info("Custom model chosen: " + st.session_state['model_name'])
  st.session_state['bert_tokenizer'], st.session_state['bert_model']  = load_bert_model(st.session_state['model_name'])
  
def init_selectbox():
  st.selectbox(
     'Choose any of these sentences or type any text below',
     ('', "[MASK] who lives in New York and works for XCorp suffers from Parkinson's", "Lou Gehrig who lives in [MASK] and works for XCorp suffers from Parkinson's","Lou Gehrig who lives in New York and works       for [MASK] suffers from Parkinson's","Lou Gehrig who lives in New York and works for XCorp suffers from [MASK]","[MASK] who lives in New York and works for XCorp suffers from Lou Gehrig's", "Parkinson who      lives in [MASK] and works for XCorp suffers from Lou Gehrig's","Parkinson who lives in New York and works for [MASK] suffers from Lou Gehrig's","Parkinson who lives in New York and works for XCorp suffers      from [MASK]","Lou Gehrig","Parkinson","Lou Gehrigh's is a [MASK]","Parkinson is a [MASK]","New York is a [MASK]","New York","XCorp","XCorp is a [MASK]","acute lymphoblastic leukemia","acute lymphoblastic       leukemia is a [MASK]"),on_change=on_option_change,key='my_choice') 
  
def init_session_states():
  if 'top_k' not in st.session_state:
    st.session_state['top_k'] = 20
  if 'bert_tokenizer' not in st.session_state:
    st.session_state['bert_tokenizer'] = None
  if 'bert_model' not in st.session_state:
    st.session_state['bert_model'] = None
  if 'model_name' not in st.session_state:
    st.session_state['model_name'] = "ajitrajasekharan/biomedical"

def main():
  init_session_states()
  

  
  st.markdown("<h3 style='text-align: center;'>Compare pretrained BERT models qualitatively</h3>", unsafe_allow_html=True)
  st.markdown("""
        <small style="font-size:20px; color: #2f2f2f"><br/>Why compare pretrained models <b>before fine-tuning</b>?</small><br/><small style="font-size:16px; color: #7f7f7f">Pretrained BERT models can be used as is, <a href="https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html"><b>with no fine tuning to perform tasks like NER.</b><br/></a>This can be done ideally by using both fill-mask and CLS predictions, or minimally using fill-mask predictions alone if they are adequate</small>
        """, unsafe_allow_html=True)

  st.write("This app can be used to examine both fill-mask predictions as well as the neighborhood of CLS vector")
  st.write("   - To examine fill-mask predictions, enter the token [MASK] or <mask> in a sentence")
  st.write("   - To examine just the [CLS] vector, enter a word/phrase or sentence. Example: eGFR or EGFR or non small cell lung cancer")
  st.sidebar.slider("Select count of predictions to display", 1 , 50, 20,key='my_slider',on_change=on_results_count_change) #some times it is possible to have less words


  try:
      st.sidebar.selectbox(label='Select Model to Apply',  options=['ajitrajasekharan/biomedical', 'bert-base-cased','bert-large-cased','microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext','allenai/scibert_scivocab_cased','dmis-lab/biobert-v1.1'], index=0,  key = "my_model1",on_change=on_model_change1)
      init_selectbox()
      st.text_input("Enter text below", "",on_change=on_text_change,key='my_text')
      st.text_input("Model not listed on left? Type the model name (fill-mask BERT models only)", "",key="my_model2",on_change=on_model_change2)

      st.info("Current status:")
      st.info("Selected results count = " + str(st.session_state['top_k']))
      st.info("Selected Model name = " + st.session_state['model_name'])
      
      #if (st.session_state['bert_tokenizer'] is None):
      #  st.session_state['bert_tokenizer'], st.session_state['bert_model']  = load_bert_model(st.session_state['model_name'])
      
      

  except Exception as e:
    st.error("Some error occurred during loading" + str(e))
    st.stop()  
	
  st.write("---")
  
 

if __name__ == "__main__":
   main()