File size: 16,640 Bytes
546a9ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
from os import path
from tqdm import tqdm
from typing import List, Generator, Optional, Union

from datasets import Dataset

from dataset.st_dataset import SummInstance, SummDataset


# Set directory to load non_huggingface dataset scripts
FILE_DIRECTORY_PATH = path.dirname(path.realpath(__file__))
BASE_NONHUGGINGFACE_DATASETS_PATH = path.join(
    FILE_DIRECTORY_PATH, "non_huggingface_datasets_builders"
)


# Huggingface Datasets


class CnndmDataset(SummDataset):
    """
    The CNN/DM dataset
    """

    dataset_name = "CNN/DailyMail"

    is_query_based = False
    is_dialogue_based = False
    is_multi_document = False

    huggingface_dataset = True
    huggingface_page = "https://huggingface.co/datasets/cnn_dailymail"

    def __init__(self):
        super().__init__(
            dataset_args=(
                "cnn_dailymail",
                "3.0.0",
            )
        )

    def _process_data(self, data: Dataset) -> Generator[SummInstance, None, None]:
        """
        Overrides the SummDataset '_process_data()' method
        This method processes the data contained in the dataset
            and puts each data instance into a SummInstance object
        :param dataset: a train/validation/test dataset
        :rtype: a generator yielding SummInstance objects
        """
        for instance in tqdm(data):
            article: str = instance["article"]
            highlights: str = instance["highlights"]
            summ_instance = SummInstance(source=article, summary=highlights)

            yield summ_instance


class MultinewsDataset(SummDataset):
    """
    The Multi News dataset
    """

    dataset_name = "Multinews"

    is_query_based = False
    is_dialogue_based = False
    is_multi_document = True

    huggingface_dataset = True
    huggingface_page = "https://huggingface.co/datasets/multi_news"

    def __init__(self):
        super().__init__(dataset_args=("multi_news",))

    def _process_data(self, data: Dataset) -> Generator[SummInstance, None, None]:
        """
        Overrides the SummDataset '_process_data()' method
        This method processes the data contained in the dataset
            and puts each data instance into a SummInstance object
        :param dataset: a train/validation/test dataset
        :rtype: a generator yielding SummInstance objects
        """
        for instance in tqdm(data):
            document: list = [
                doc for doc in instance["document"].split("|||||") if doc
            ]  # removes the empty string generated
            # since each doc ends with the delimiting token '|||||'
            # the final doc creates an empty string
            summary: str = instance["summary"]
            summ_instance = SummInstance(source=document, summary=summary)

            yield summ_instance


class SamsumDataset(SummDataset):
    """
    The SAMsum Dataset
    """

    dataset_name = "Samsum"

    is_query_based = False
    is_dialogue_based = True
    is_multi_document = False

    huggingface_dataset = True
    huggingface_page = "https://huggingface.co/datasets/samsum"

    def __init__(self):
        super().__init__(dataset_args=("samsum",))

    def _process_data(self, data: Dataset) -> Generator[SummInstance, None, None]:
        """
        Overrides the SummDataset '_process_data()' method
        This method processes the data contained in the dataset
            and puts each data instance into a SummInstance object
        :param dataset: a train/validation/test dataset
        :rtype: a generator yielding SummInstance objects
        """
        for instance in tqdm(data):
            dialogue: List = instance["dialogue"].split(
                "\r\n"
            )  # split each dialogue into a list of strings such as
            # ["speaker1 : utter..", "speaker2 : utter..."]
            summary: str = instance["summary"]
            summ_instance = SummInstance(source=dialogue, summary=summary)

            yield summ_instance


class XsumDataset(SummDataset):
    """
    The Xsum Dataset
    """

    dataset_name = "Xsum"

    huggingface_dataset = True
    huggingface_page = "https://huggingface.co/datasets/xsum"

    is_query_based = False
    is_dialogue_based = False
    is_multi_document = False

    def __init__(self):
        super().__init__(dataset_args=("xsum",))

    def _process_data(self, data: Dataset) -> Generator[SummInstance, None, None]:
        """
        Overrides the SummDataset '_process_data()' method
        This method processes the data contained in the dataset
            and puts each data instance into a SummInstance object
        :param dataset: a train/validation/test dataset
        :rtype: a generator yielding SummInstance objects
        """
        for instance in tqdm(data):
            document: List = instance["document"]
            summary: str = instance["summary"]
            summ_instance = SummInstance(source=document, summary=summary)

            yield summ_instance


class PubmedqaDataset(SummDataset):
    """
    The Pubmed QA dataset
    """

    dataset_name = "Pubmedqa"

    is_query_based = True
    is_dialogue_based = False
    is_multi_document = False

    huggingface_dataset = True
    huggingface_page = "https://huggingface.co/datasets/pubmed_qa"

    def __init__(self, seed=None):
        super().__init__(
            dataset_args=(
                "pubmed_qa",
                "pqa_artificial",
            )
        )

    def _process_data(self, data: Dataset) -> Generator[SummInstance, None, None]:
        """
        Overrides the SummDataset '_process_data()' method
        This method processes the data contained in the dataset
            and puts each data instance into a SummInstance object
        :param dataset: a train/validation/test dataset
        :rtype: a generator yielding SummInstance objects
        """
        for instance in tqdm(data):
            context: str = " ".join(instance["context"]["contexts"])
            answer: str = instance["long_answer"]
            query: str = instance["question"]
            summ_instance = SummInstance(source=context, summary=answer, query=query)

            yield summ_instance


class MlsumDataset(SummDataset):
    """
    The MLsum Dataset - A multi-lingual dataset featuring 5 languages
    Includes 1.5 million news articles and their corresponding summaries

    "de" - German
    "es" - Spanish
    "fr" - French
    "ru" - Russian
    "tu" - Turkish
    """

    dataset_name = "MlSum"

    is_query_based = False
    is_dialogue_based = False
    is_multi_document = False

    huggingface_dataset = True
    huggingface_page = "https://huggingface.co/datasets/mlsum"
    supported_languages = ["de", "es", "fr", "ru", "tu"]

    mlsum_instantiation_guide = """The languages supported for the Mlsum Dataset are:
                de - German
                es - Spanish
                fr - French
                ru - Russian
                tu - Turkish

                Examples to instantiate the dataset:
                1. Dataset with only one language
                   dataset = MlsumDataset({language_token})
                   dataset = MlsumDataset("es")
                   dataset = MlsumDataset("tu")...

                2. Dataset with a multiple languages
                   dataset = MlsumDataset({list of language_token})
                   dataset = MlsumDataset(["es","de"])
                   dataset = MlsumDataset(["es","de", "tu"])...

                3. Dataset with all supported languages (default)
                   dataset = MlsumDataset(all)
                   dataset = MlsumDataset()
                """

    def __init__(self, languages: Optional[Union[str, List[str]]] = "all"):
        super().__init__(dataset_args=(languages,))

    def _load_dataset_safe(self, languages: Optional[Union[str, List[str]]]):
        """
        Overrides the parent class method
        Method loads multiple datasets of different languages provided in :param languages:
            It then concatenates these datasets into one combined dataset
        :rtype: datasetDict containing the combined dataset
        :param languages: Optional, either a string or list of strings specifying the languages
            to load
        """
        print(MlsumDataset.mlsum_instantiation_guide)

        # Choose languages to download articles
        if languages == "all":
            selected_languages = MlsumDataset.supported_languages
        elif isinstance(languages, list):
            for language in languages:
                assert self.is_supported(language)
            selected_languages = languages
        else:
            assert self.is_supported(languages)
            selected_languages = [languages]

        # Concatenate selected languaeges into one dataset
        language_datasets = []
        for language in selected_languages:
            dataset = super()._load_dataset_safe(
                "mlsum",
                language,
            )

            language_datasets.append(dataset)

        mlsum_dataset = self._concatenate_dataset_dicts(language_datasets)

        return mlsum_dataset

    def _process_data(self, data: Dataset) -> Generator[SummInstance, None, None]:
        """
        Overrides the SummDataset '_process_data()' method
        This method processes the data contained in the dataset
            and puts each data instance into a SummInstance object
        :param dataset: a train/validation/test dataset
        :rtype: a generator yielding SummInstance objects
        """
        for instance in tqdm(data):
            article: List = instance["text"]
            summary: str = instance["summary"]
            summ_instance = SummInstance(source=article, summary=summary)

            yield summ_instance

    def is_supported(self, language: str):
        """
        Checks whether the requested langues is supported
        :param language: string containing the requested language
        :rtype bool:
        """
        if language not in MlsumDataset.supported_languages:
            print(MlsumDataset.mlsum_instantiation_guide)
            raise ValueError(
                f"The language(s): '{language}' entered is not supported. See above message for usage info"
            )
        else:
            return True


# Non-huggingface datasets


class ScisummnetDataset(SummDataset):
    """
    The SciSummNet dataset. As a dataset not included by huggingface, we need to do manually download, set basic
        information for the dataset
    """

    dataset_name = "ScisummNet"

    version = "1.1.0"
    description = (
        "A summary of scientific papers should ideally incorporate the impact of the papers on the "
        "research community reflected by citations. To facilitate research in citation-aware scientific "
        "paper summarization (Scisumm), the CL-Scisumm shared task has been organized since 2014 for "
        "papers in the computational linguistics and NLP domain."
    )

    is_dialogue_based = False
    is_multi_document = False
    is_query_based = False

    huggingface_dataset = False
    builder_script_path = path.join(
        BASE_NONHUGGINGFACE_DATASETS_PATH, dataset_name.lower() + ".py"
    )

    def __init__(self, seed=None):
        super().__init__()

    def _process_data(self, data: Dataset) -> Generator[SummInstance, None, None]:
        """
        Overrides the SummDataset '_process_data()' method
        This method processes the data contained in the dataset
            and puts each data instance into a SummInstance object
        :param dataset: a train/validation/test dataset
        :rtype: a generator yielding SummInstance objects
        """
        for instance in tqdm(data):
            docs: List = [
                instance["document_xml"],
                instance["citing_sentences_annotated.json"],
            ]
            summary: str = instance["summary"]
            summ_instance = SummInstance(source=docs, summary=summary)

            yield summ_instance


class SummscreenDataset(SummDataset):
    """
    The SummScreen dataset. As a dataset not included by huggingface, we need to do manually download, set basic
        information for the dataset
    """

    dataset_name = "Summscreen"

    version = "1.1.0"
    is_dialogue_based = True
    is_multi_document = False
    is_query_based = False

    huggingface_dataset = False
    builder_script_path = path.join(
        BASE_NONHUGGINGFACE_DATASETS_PATH, dataset_name.lower() + ".py"
    )

    def __init__(self, seed=None):
        super().__init__()

    def _process_data(self, data: Dataset) -> Generator[SummInstance, None, None]:
        """
        Overrides the SummDataset '_process_data()' method
        This method processes the data contained in the dataset
            and puts each data instance into a SummInstance object
        :param dataset: a train/validation/test dataset
        :rtype: a generator yielding SummInstance objects
        """
        for instance in tqdm(data):
            transcript: List = instance[
                "transcript"
            ]  # convert string into a list of string dialogues
            recap: str = instance["recap"]
            summ_instance = SummInstance(source=transcript, summary=recap)

            yield summ_instance


class QMsumDataset(SummDataset):
    """
    QMSum Dataset
    """

    dataset_name = "QMsum"
    description = """
    QMSum is a new human-annotated benchmark for query-based multi-domain meeting summarization task,
    which consists of 1,808 query-summary pairs over 232 meetings in multiple domains.
    """

    is_dialogue_based = True
    is_multi_document = False
    is_query_based = True

    huggingface_dataset = False
    builder_script_path = path.join(
        BASE_NONHUGGINGFACE_DATASETS_PATH, dataset_name.lower() + ".py"
    )

    def __init__(self):
        super().__init__()

    def _process_data(self, data: Dataset) -> Generator[SummInstance, None, None]:
        """
        Overrides the SummDataset '_process_data()' method
        This method processes the data contained in the dataset
            and puts each data instance into a SummInstance object
        :param dataset: a train/validation/test dataset
        :rtype: a generator yielding SummInstance objects
        """
        for instance in tqdm(data):
            for query_set in (
                instance["general_query_list"] + instance["specific_query_list"]
            ):
                meeting: List = [
                    utterance["speaker"] + " : " + utterance["content"]
                    for utterance in instance["meeting_transcripts"]
                ]
                query: str = query_set["query"]
                summary: str = query_set["answer"]
                summ_instance = SummInstance(
                    source=meeting, summary=summary, query=query
                )

            yield summ_instance


class ArxivDataset(SummDataset):
    """
    The Arxiv Dataset
    """

    dataset_name = "Arxiv_longsummarization"
    description = """
    A summarization dataset comprised of pairs of scientific papers.
    The dataset provides a challenging testbed for abstractive summarization.
    It contains papers and their abstracts.
    """

    is_dialogue_based = False
    is_multi_document = False
    is_query_based = False

    huggingface_dataset = False
    builder_script_path = path.join(
        BASE_NONHUGGINGFACE_DATASETS_PATH, dataset_name.lower() + ".py"
    )

    def __init__(self):

        print(
            "*****************",
            "***Attention***",
            "This dataset is quite large (approx 5Gb and will need about 15 Gb for the extraction process",
            "Cancel/interrupt the download if size and time constraints will not be met",
            "*****************",
            sep="\n",
        )

        super().__init__()

    def _process_data(self, data: Dataset) -> Generator[SummInstance, None, None]:
        """
        Overrides the SummDataset '_process_data()' method
        This method processes the data contained in the dataset
            and puts each data instance into a SummInstance object
        :param dataset: a train/validation/test dataset
        :rtype: a generator yielding SummInstance objects
        """
        for instance in tqdm(data):
            article: List = instance["article_text"]
            abstract: str = " ".join(instance["abstract_text"])
            summ_instance = SummInstance(source=article, summary=abstract)

            yield summ_instance