File size: 1,792 Bytes
651868d
4c0d947
 
 
 
 
 
 
 
 
ba1e91a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c0d947
 
ba1e91a
4c0d947
 
 
 
 
 
 
 
 
 
1361e51
4c0d947
 
d493936
4c0d947
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import cv2
import paddlehub as hub
import gradio as gr
import torch

torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/10/21/14/46/fox-1758183_1280.jpg', 'fox.jpg')

model = hub.Module(name='U2Net')

def infer(webcam, img,option):
  if option == "webcam":
      webcam.save('temp.jpg')
      result = model.Segmentation(
          images=[cv2.imread("temp.jpg")],
          paths=None,
          batch_size=1,
          input_size=320,
          output_dir='output',
          visualization=True)
  else:
      img.save('temp.jpg')
      result = model.Segmentation(
          images=[cv2.imread("temp.jpg")],
          paths=None,
          batch_size=1,
          input_size=320,
          output_dir='output',
          visualization=True)
  return result[0]['front'][:,:,::-1], result[0]['mask']

inputs = [gr.inputs.Image(source="webcam", label="Webcam", type="pil",optional=True),gr.inputs.Image(source="upload", label="Input Image", type="pil",optional=True),gr.inputs.Radio(choices=["webcam","Image"], type="value", default="Image", label="Input Type")]
outputs = [
           gr.outputs.Image(type="numpy",label="Front"),
           gr.outputs.Image(type="numpy",label="Mask")
           ]

title = "U^2-Net"
description = "demo for U^2-Net. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2005.09007'>U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection</a> | <a href='https://github.com/xuebinqin/U-2-Net'>Github Repo</a></p>"

examples = [
  ['fox.jpg','fox.jpg','Image'],
]


gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()