File size: 6,944 Bytes
e611e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import streamlit as st
from pathlib import Path
from PyPDF2 import PdfReader
import sqlite3
import openai
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document as LlamaDocument
from llama_index.core.storage.storage_context import StorageContext
from llama_index.core.vector_stores import SimpleVectorStore
from datetime import datetime

openai.api_key = os.getenv("OPENAI_API_KEY")

class Document:
    def __init__(self):
        # Create necessary directories if they don't exist
        self.uploads_dir = Path("uploads")
        self.embeddings_dir = Path("embeddings")
        self.uploads_dir.mkdir(exist_ok=True)
        self.embeddings_dir.mkdir(exist_ok=True)
        
        # Initialize database
        self.init_database()

    def validateDocument(self, uploaded_file):
        """
        Validate the uploaded document's size and type
        
        Args:
            uploaded_file: Streamlit UploadedFile object
            
        Returns:
            tuple: (bool, str) - (is_valid, error_message)
        """
        # Check file type
        if uploaded_file.type != "application/pdf":
            return False, "Invalid Document Type"
        
        # Check file size (1MB = 1048576 bytes)
        if uploaded_file.size > 1048576:
            return False, "Invalid Document Size"
        
        return True, ""
    
    def init_database(self):
        """Initialize SQLite database with required table"""
        conn = sqlite3.connect('documents.db')
        cursor = conn.cursor()
        
        # Create users_documents table if it doesn't exist
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS users_documents (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                user_id TEXT NOT NULL,
                filename TEXT NOT NULL,
                upload_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP
            )
        ''')
        
        conn.commit()
        conn.close()

    def upload(self, uploaded_file, user_id):
        """
        Upload the document to the uploads folder and store metadata in database
        
        Args:
            uploaded_file: Streamlit UploadedFile object
            user_id: String identifier for the user
            
        Returns:
            bool: Success status of upload
        """
        try:
            if uploaded_file is None:
                return False
            
            # Generate unique filename with timestamp
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"{uploaded_file.name}"
            file_path = self.uploads_dir / filename
            
            # Save file to uploads directory
            with open(file_path, "wb") as f:
                f.write(uploaded_file.getbuffer())
            
            # Store file information in database
            conn = sqlite3.connect('documents.db')
            cursor = conn.cursor()
            cursor.execute(
                "INSERT INTO users_documents (user_id, filename) VALUES (?, ?)",
                (user_id, filename)
            )
            conn.commit()
            conn.close()
            
            return True
            
        except Exception as e:
            st.error(f"Error in upload: {str(e)}")
            return False

    def processDocument(self, filename):
        """
        Extract text from PDF document
        
        Args:
            filename: Name of the file to process
            
        Returns:
            str: Extracted text from the PDF
        """
        try:
            file_path = self.uploads_dir / filename
            
            if not file_path.exists():
                raise FileNotFoundError(f"File {filename} not found in uploads directory")
            
            # Extract text from PDF
            pdf_reader = PdfReader(str(file_path))
            text = ""
            
            for page in pdf_reader.pages:
                text += page.extract_text()
            
            return text
            
        except Exception as e:
            st.error(f"Error in processing document: {str(e)}")
            return None

    def storeEmbeddings(self, text, filename):
        """
        Create and store embeddings using LlamaIndex
        
        Args:
            text: Extracted text from the document
            filename: Name of the file to use for storing embeddings
            
        Returns:
            bool: Success status of embedding storage
        """
        try:
            # Remove file extension from filename
            base_filename = Path(filename).stem
            
            # Create a LlamaIndex document
            documents = [LlamaDocument(text=text)]
            
            # Create vector store and index
            vector_store = SimpleVectorStore()
            storage_context = StorageContext.from_defaults(vector_store=vector_store)
            index = VectorStoreIndex.from_documents(
                documents,
                storage_context=storage_context
            )
            
            # Save the index
            index.storage_context.persist(persist_dir=str(self.embeddings_dir / base_filename))
            
            return True
            
        except Exception as e:
            st.error(f"Error in storing embeddings: {str(e)}")
            return False

# Example Streamlit interface
def main():
    st.title("Document Upload and Processing")
    
    # Initialize Document class
    doc_processor = Document()
    
    # Simple user ID input (in a real app, this would be handled by authentication)
    user_id = st.text_input("Enter User ID")
    
    # File upload widget
    uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
    
    if uploaded_file is not None and user_id:
        if st.button("Process Document"):
            # Upload file

            is_valid, error_message = doc_processor.validateDocument(uploaded_file)
            if not is_valid:
                st.error(error_message)
            else:
                if doc_processor.upload(uploaded_file, user_id):
                    st.success("File uploaded successfully!")
                    
                    # Process document
                    text = doc_processor.processDocument(uploaded_file.name)
                    if text:
                        st.success("Document processed successfully!")
                        
                        # Store embeddings
                        if doc_processor.storeEmbeddings(text, uploaded_file.name):
                            st.success("Embeddings stored successfully!")
                        else:
                            st.error("Error storing embeddings")
                    else:
                        st.error("Error processing document")
                else:
                    st.error("Error uploading file")

if __name__ == "__main__":
    main()