import os import json import time import pyaudio from vosk import Model, KaldiRecognizer from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer from huggingface_hub import login from recommendations import ProductRecommender from objection_handling import load_objections, check_objections # Ensure check_objections is imported from objection_handling import ObjectionHandler from setup import config from sentence_transformers import SentenceTransformer from dotenv import load_dotenv # Load environment variables load_dotenv() # Initialize the ProductRecommender product_recommender = ProductRecommender(r"C:\Users\Gowri Shankar\Downloads\AI-Sales-Call-Assistant--main\Sales_Calls_Transcriptions_Sheet2.csv") # Hugging Face API setup huggingface_api_key = config["huggingface_api_key"] login(token=huggingface_api_key) # Sentiment Analysis Model model_name = "tabularisai/multilingual-sentiment-analysis" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) # Vosk Speech Recognition Model vosk_model_path = config["vosk_model_path"] if not vosk_model_path: raise ValueError("Error: vosk_model_path is not set in the .env file.") try: vosk_model = Model(vosk_model_path) print("Vosk model loaded successfully.") except Exception as e: raise ValueError(f"Failed to load Vosk model: {e}") recognizer = KaldiRecognizer(vosk_model, 16000) audio = pyaudio.PyAudio() stream = audio.open(format=pyaudio.paInt16, channels=1, rate=16000, input=True, frames_per_buffer=4000) stream.start_stream() # Function to analyze sentiment def preprocess_text(text): """Preprocess text for better sentiment analysis.""" # Strip whitespace and convert to lowercase processed = text.strip().lower() return processed def preprocess_text(text): """Preprocess text for better sentiment analysis.""" return text.strip().lower() def analyze_sentiment(text): """Analyze sentiment of the text using Hugging Face model.""" try: if not text.strip(): return "NEUTRAL", 0.0 processed_text = preprocess_text(text) result = sentiment_analyzer(processed_text)[0] print(f"Sentiment Analysis Result: {result}") # Map raw labels to sentiments sentiment_map = { 'Very Negative': "NEGATIVE", 'Negative': "NEGATIVE", 'Neutral': "NEUTRAL", 'Positive': "POSITIVE", 'Very Positive': "POSITIVE" } sentiment = sentiment_map.get(result['label'], "NEUTRAL") return sentiment, result['score'] except Exception as e: print(f"Error in sentiment analysis: {e}") return "NEUTRAL", 0.5 def transcribe_with_chunks(objections_dict): """Perform real-time transcription with sentiment analysis.""" print("Say 'start listening' to begin transcription. Say 'stop listening' to stop.") is_listening = False chunks = [] current_chunk = [] chunk_start_time = time.time() # Initialize handlers with semantic search capabilities objection_handler = ObjectionHandler(r"C:\Users\Gowri Shankar\Downloads\AI-Sales-Call-Assistant--main\Sales_Calls_Transcriptions_Sheet3.csv") product_recommender = ProductRecommender(r"C:\Users\Gowri Shankar\Downloads\AI-Sales-Call-Assistant--main\Sales_Calls_Transcriptions_Sheet2.csv") # Load the embeddings model once model = SentenceTransformer('all-MiniLM-L6-v2') try: while True: data = stream.read(4000, exception_on_overflow=False) if recognizer.AcceptWaveform(data): result = recognizer.Result() text = json.loads(result)["text"] if "start listening" in text.lower(): is_listening = True print("Listening started. Speak into the microphone.") continue elif "stop listening" in text.lower(): is_listening = False print("Listening stopped.") if current_chunk: chunk_text = " ".join(current_chunk) sentiment, score = analyze_sentiment(chunk_text) chunks.append((chunk_text, sentiment, score)) current_chunk = [] continue if is_listening and text.strip(): print(f"Transcription: {text}") current_chunk.append(text) if time.time() - chunk_start_time > 3: if current_chunk: chunk_text = " ".join(current_chunk) # Always process sentiment sentiment, score = analyze_sentiment(chunk_text) chunks.append((chunk_text, sentiment, score)) # Get objection responses and check similarity score query_embedding = model.encode([chunk_text]) distances, indices = objection_handler.index.search(query_embedding, 1) # If similarity is high enough, show objection response if distances[0][0] < 1.5: # Threshold for similarity responses = objection_handler.handle_objection(chunk_text) if responses: print("\nSuggested Response:") for response in responses: print(f"→ {response}") # Get product recommendations and check similarity score distances, indices = product_recommender.index.search(query_embedding, 1) # If similarity is high enough, show recommendations if distances[0][0] < 1.5: # Threshold for similarity recommendations = product_recommender.get_recommendations(chunk_text) if recommendations: print(f"\nRecommendations for this response:") for idx, rec in enumerate(recommendations, 1): print(f"{idx}. {rec}") print("\n") current_chunk = [] chunk_start_time = time.time() except KeyboardInterrupt: print("\nExiting...") stream.stop_stream() return chunks if __name__ == "__main__": objections_file_path = r"C:\Users\Gowri Shankar\Downloads\AI-Sales-Call-Assistant--main\Sales_Calls_Transcriptions_Sheet3.csv" objections_dict = load_objections(objections_file_path) transcribed_chunks = transcribe_with_chunks(objections_dict) print("Final transcriptions and sentiments:", transcribed_chunks)