akshaysatyam2 commited on
Commit
4d3abab
·
1 Parent(s): 4b9897b

Added streamlit application file.

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
3
+
4
+ @st.cache_resource
5
+ def load_model():
6
+ model = GPT2LMHeadModel.from_pretrained("finetuned-distilgpt2")
7
+ tokenizer = GPT2Tokenizer.from_pretrained("finetuned-distilgpt2")
8
+ tokenizer.pad_token = tokenizer.eos_token
9
+ return model, tokenizer
10
+
11
+ model, tokenizer = load_model()
12
+
13
+ def chat_with_model(query):
14
+ inputs = tokenizer.encode(query, return_tensors="pt", padding=True, truncation=True, max_length=512)
15
+ outputs = model.generate(
16
+ inputs,
17
+ max_length=150,
18
+ num_return_sequences=1,
19
+ no_repeat_ngram_size=2,
20
+ top_k=50,
21
+ top_p=0.95,
22
+ temperature=1.0,
23
+ pad_token_id=tokenizer.pad_token_id,
24
+ )
25
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
26
+ return response
27
+
28
+ st.title("Chat with Akshay")
29
+ st.text("Fine-tuned GPT-2 for interactive conversations about me.")
30
+
31
+ user_input = st.text_input("You:", placeholder="Type your message here...")
32
+ if user_input:
33
+ response = chat_with_model(user_input)
34
+ st.text_area("GPT-2 as Akshay:", response, height=200)