File size: 7,035 Bytes
c87c295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import openai
import base64
import os
import io
import time
from PIL import Image
from abc import ABCMeta, abstractmethod


def create_vision_chat_completion(vision_model, base64_image, prompt):
    try:
        response = openai.ChatCompletion.create(
            model=vision_model,
            messages=[
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt},
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{base64_image}",
                            },
                        },
                    ],
                }
            ],
            max_tokens=1000,
        )
        return response.choices[0].message.content
    except:
        return None


def create_image(prompt):
    try:
        response = openai.Image.create(
            model="dall-e-3",
            prompt=prompt,
            response_format="b64_json"
        )
        return response.data[0]['b64_json']
    except:
        return None


def image_to_base64(path):
    try:
        _, suffix = os.path.splitext(path)
        if suffix not in {'.jpg', '.jpeg', '.png', '.webp'}:
            img = Image.open(path)
            img_png = img.convert('RGB')
            img_png.tobytes()
            byte_buffer = io.BytesIO()
            img_png.save(byte_buffer, 'PNG')
            encoded_string = base64.b64encode(byte_buffer.getvalue()).decode('utf-8')
        else:
            with open(path, "rb") as image_file:
                encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
        return encoded_string
    except:
        return None


def base64_to_image_bytes(image_base64):
    try:
        return base64.b64decode(image_base64)
    except:
        return None


def inquire_image(work_dir, vision_model, path, prompt):
    image_base64 = image_to_base64(f'{work_dir}/{path}')
    hypertext_to_display = None
    if image_base64 is None:
        return "Error: Image transform error", None
    else:
        response = create_vision_chat_completion(vision_model, image_base64, prompt)
        if response is None:
            return "Model response error", None
        else:
            return response, hypertext_to_display


def dalle(unique_id, prompt):
    img_base64 = create_image(prompt)
    text_to_gpt = "Image has been successfully generated and displayed to user."

    if img_base64 is None:
        return "Error: Model response error", None

    img_bytes = base64_to_image_bytes(img_base64)
    if img_bytes is None:
        return "Error: Image transform error", None

    temp_path = f'cache/temp_{unique_id}'
    if not os.path.exists(temp_path):
        os.mkdir(temp_path)
    path = f'{temp_path}/{hash(time.time())}.png'

    with open(path, 'wb') as f:
        f.write(img_bytes)

    hypertext_to_display = f'<img src=\"file={path}\" width="50%" style=\'max-width:none; max-height:none\'>'
    return text_to_gpt, hypertext_to_display


class Tool(metaclass=ABCMeta):
    def __init__(self, config):
        self.config = config

    @abstractmethod
    def support(self):
        pass

    @abstractmethod
    def get_tool_data(self):
        pass


class ImageInquireTool(Tool):
    def support(self):
        return self.config['model']['GPT-4V']['available']

    def get_tool_data(self):
        return {
            "tool_name": "inquire_image",
            "tool": inquire_image,
            "system_prompt": "If necessary, utilize the 'inquire_image' tool to query an AI model regarding the "
                             "content of images uploaded by users. Avoid phrases like\"based on the analysis\"; "
                             "instead, respond as if you viewed the image by yourself. Keep in mind that not every"
                             "tasks related to images require knowledge of the image content, such as converting "
                             "an image format or extracting image file attributes, which should use `execute_code` "
                             "tool instead. Use the tool only when understanding the image content is necessary.",
            "tool_description": {
                "name": "inquire_image",
                "description": "This function enables you to inquire with an AI model about the contents of an image "
                               "and receive the model's response.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "path": {
                            "type": "string",
                            "description": "File path of the image"
                        },
                        "prompt": {
                            "type": "string",
                            "description": "The question you want to pose to the AI model about the image"
                        }
                    },
                    "required": ["path", "prompt"]
                }
            },
            "additional_parameters": {
                "work_dir": lambda bot_backend: bot_backend.jupyter_work_dir,
                "vision_model": self.config['model']['GPT-4V']['model_name']
            }
        }


class DALLETool(Tool):
    def support(self):
        return True

    def get_tool_data(self):
        return {
            "tool_name": "dalle",
            "tool": dalle,
            "system_prompt": "If user ask you to generate an art image, you can translate user's requirements into a "
                             "prompt and sending it to the `dalle` tool. Please note that this tool is specifically "
                             "designed for creating art images. For scientific figures, such as plots, please use the "
                             "Python code execution tool `execute_code` instead.",
            "tool_description": {
                "name": "dalle",
                "description": "This function allows you to access OpenAI's DALL·E-3 model for image generation.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "prompt": {
                            "type": "string",
                            "description": "A detailed description of the image you want to generate, should be in "
                                           "English only. "
                        }
                    },
                    "required": ["prompt"]
                }
            },
            "additional_parameters": {
                "unique_id": lambda bot_backend: bot_backend.unique_id,
            }
        }


def get_available_tools(config):
    tools = [ImageInquireTool]

    available_tools = []
    for tool in tools:
        tool_instance = tool(config)
        if tool_instance.support():
            available_tools.append(tool_instance.get_tool_data())
    return available_tools