codellama-CodeLlama-7b-hf
/
Llama2-Code-Interpreter-main
/code_interpreter
/GPTCodeInterpreterDataCollect.py
import json | |
import os, sys | |
import time | |
import re | |
from pathlib import Path | |
from typing import List, Literal, Optional, Tuple, TypedDict, Dict | |
# Get the path from environment variable | |
prj_root_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
sys.path.append(prj_root_path) | |
from code_interpreter.JuypyterClient import JupyterNotebook | |
from code_interpreter.BaseCodeInterpreter import BaseCodeInterpreter | |
from utils.const import * | |
from colorama import init, Fore, Style | |
from rich.markdown import Markdown | |
import base64 | |
import openai | |
from retrying import retry | |
import logging | |
from termcolor import colored | |
# load from key file | |
with open("./openai_api_key.txt") as f: | |
OPENAI_API_KEY = key = f.read() | |
openai.api_key = OPENAI_API_KEY | |
from utils.cleaner import clean_error_msg | |
from prompt.gpt4_prompt import * | |
def remove_string(s): | |
pattern = r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}\.\d{6}:.*LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64\n" | |
return re.sub(pattern, "", s) | |
def gen_questions(prefix="What is 55th fibonacci number?"): | |
response = openai.ChatCompletion.create( | |
model="gpt-4", | |
messages=[ | |
{ | |
"role": "system", | |
"content": "You are teacherGPT, You need to generate only questions(to student not the explanation and solution) based on student history. \n\nGive him only one question.\n\nAlso remember that student can use code. ", | |
}, | |
{ | |
"role": "user", | |
"content": f"{prefix}\nmore harder one but not the similar domain of above.", | |
}, | |
], | |
temperature=0.1, | |
max_tokens=300, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0, | |
) | |
return response["choices"][0]["message"]["content"] | |
def save_dialog(dialog, base_path: str = f"{prj_root_path}/gpt_data_gen"): | |
file_number = 0 | |
while True: | |
# Construct the path | |
file_name = f"{file_number}.json" | |
full_path = os.path.join(base_path, file_name) | |
# Check if the file already exists | |
if not os.path.exists(full_path): | |
# If not, save the file | |
with open(full_path, "w") as f: | |
json.dump(dialog, f) | |
print(f"Dialog saved to {full_path}") | |
break | |
else: | |
# If the file does exist, increment the file number and try again | |
file_number += 1 | |
def clean_the_dialog(dialog, question): | |
question_idx = 0 | |
for idx, item in enumerate(dialog): | |
if item["content"] == question: | |
question_idx = idx | |
filtered_dialog = dialog[question_idx:] | |
user_qinit_dict = filtered_dialog[0] | |
answer_fuse_str = "\n".join([i["content"].strip() for i in filtered_dialog[1::2]]) | |
final_dialog_dict = [ | |
{"role": "user", "content": user_qinit_dict["content"]}, | |
{"role": "assistant", "content": answer_fuse_str}, | |
] | |
return final_dialog_dict | |
class GPTCodeInterpreter(BaseCodeInterpreter): | |
def __init__(self, model="gpt-4"): | |
self.model = model | |
self.dialog = [ | |
# {"role": "system", "content": CODE_INTERPRETER_SYSTEM_PROMPT }, | |
{ | |
"role": "system", | |
"content": CODE_INTERPRETER_SYSTEM_PROMPT + "\n" + extra_prompt, | |
}, | |
# {"role": "user", "content": "How can I use BeautifulSoup to scrape a website and extract all the URLs on a page?"}, | |
# {"role": "assistant", "content": "I think I need to use beatifulsoup to find current korean president,"} | |
] | |
self.dialog += few_shot_1 | |
# self.dialog += few_shot_4 | |
self.response = None | |
assert os.path.isfile( | |
"./openai_api_key.txt" | |
), "The openai_api_key.txt file could not be found. Please make sure it is in the same directory as this script, and that it contains your OpenAI API key." | |
# load from key file | |
with open("./openai_api_key.txt") as f: | |
OPENAI_API_KEY = f.read() | |
openai.api_key = OPENAI_API_KEY | |
self.nb = JupyterNotebook() | |
out = self.nb.add_and_run(TOOLS_CODE) # tool import | |
def get_response_content(self): | |
if self.response: | |
return self.response["choices"][0]["message"]["content"] | |
else: | |
return None | |
def ChatCompletion(self): | |
try: | |
self.response = openai.ChatCompletion.create( | |
model=self.model, messages=self.dialog, temperature=0.1, top_p=1.0 | |
) | |
except Exception as e: | |
print(f"error while OPENAI api call {e}") | |
def chat(self, user_message: str, VERBOSE: bool = False, MAX_RETRY: int = 6): | |
self.dialog.append({"role": "user", "content": user_message}) | |
code_block_output = "" | |
attempt = 0 | |
img_data = None | |
if VERBOSE: | |
print( | |
"###User : " + Fore.BLUE + Style.BRIGHT + user_message + Style.RESET_ALL | |
) | |
print("\n###Assistant : ") | |
for i in range(MAX_RETRY): | |
# GPT response | |
self.ChatCompletion() | |
# Get code block | |
generated_text = self.get_response_content() | |
generated_code_blocks = self.extract_code_blocks(generated_text) | |
# execute code | |
if len(generated_code_blocks) > 0: | |
# Find the position of the first code block in the last answer | |
first_code_block_pos = ( | |
generated_text.find(generated_code_blocks[0]) | |
if generated_code_blocks | |
else -1 | |
) | |
text_before_first_code_block = ( | |
generated_text | |
if first_code_block_pos == -1 | |
else generated_text[:first_code_block_pos] | |
) | |
if VERBOSE: | |
print(Fore.GREEN + text_before_first_code_block + Style.RESET_ALL) | |
if VERBOSE: | |
print( | |
Fore.YELLOW | |
+ generated_code_blocks[0] | |
+ "\n```\n" | |
+ Style.RESET_ALL | |
) | |
code_block_output, error_flag = self.execute_code_and_return_output( | |
generated_code_blocks[0] | |
) | |
code_block_output = f"{code_block_output}" | |
if code_block_output is not None: | |
code_block_output = code_block_output.strip() | |
code_block_output = remove_string(code_block_output) | |
if len(code_block_output) > 500: | |
code_block_output = ( | |
code_block_output[:200] + "⋯(skip)⋯" + code_block_output[-200:] | |
) | |
code_block_output_str = f"\n```RESULT\n{code_block_output}\n```\n" | |
if VERBOSE: | |
print(Fore.LIGHTBLACK_EX + code_block_output_str + Style.RESET_ALL) | |
# markdown = Markdown(code_block_output_str)print(markdown) | |
gen_final = f"{text_before_first_code_block}{generated_code_blocks[0]}\n```{code_block_output_str}" | |
self.dialog.append( | |
{ | |
"role": "assistant", | |
"content": f"{text_before_first_code_block}{generated_code_blocks[0]}\n```{code_block_output_str}", | |
} | |
) | |
self.dialog.append( | |
{ | |
"role": "user", | |
"content": "Keep going. if you think debugging generate code. need conclusion to question only text (Do not leave result part alone). Doesn't need to generated anything then just say <done>", | |
} | |
) | |
else: | |
if "<done>" in generated_text: | |
generated_text = generated_text.split("<done>")[0].strip() | |
if len(generated_text) <= 0: | |
break | |
if VERBOSE: | |
print(Fore.GREEN + generated_text + Style.RESET_ALL) | |
self.dialog.append( | |
{ | |
"role": "assistant", | |
"content": f"{generated_text}", | |
} | |
) | |
break | |
return self.dialog[-1] | |
if __name__ == "__main__": | |
import random | |
SEED_TASK = [ | |
# "Resize this image to 512x512\nUser Uploaded File : './tmp/img.png'", | |
"Write a Python script that retrieves Google Trends data for a given keyword and stock price data for a specific company over the same timeframe, normalizes both datasets to the same scale, and then plots them on the same graph to analyze potential correlations.", | |
"Could you conduct a frequency analysis on Apple's stock price to determine any cyclic patterns that occur on a weekly, monthly, or quarterly basis?", | |
] | |
questions = SEED_TASK | |
from tqdm import tqdm | |
for i in tqdm(range(150000)): | |
interpreter = GPTCodeInterpreter() | |
question = questions[i] | |
output = interpreter.chat(user_message=question, VERBOSE=True, MAX_RETRY=5) | |
sample = clean_the_dialog(interpreter.dialog, question) | |
save_dialog(sample) | |
# q1,q2,q3 = random.sample(questions, k=3) | |
# question = gen_questions(prefix = f'{q1}\n{q2}\n{q3}') | |
# questions.append(question) | |
del interpreter | |
print(f"new question :: {question}") | |