codellama-CodeLlama-7b-hf
/
Llama2-Code-Interpreter-main
/code_interpreter
/RetrospectiveGPTCodeInterpreter.py
import json | |
import os | |
import sys | |
import time | |
import copy | |
import re | |
from pathlib import Path | |
from typing import List, Literal, Optional, Tuple, TypedDict, Dict | |
import numpy as np | |
from tqdm import tqdm | |
# Get the path from environment variable | |
prj_root_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
sys.path.append(prj_root_path) | |
from code_interpreter.JuypyterClient import JupyterNotebook | |
from code_interpreter.BaseCodeInterpreter import BaseCodeInterpreter | |
from utils.const import * | |
from prompt.gpt4_prompt import CODE_INTERPRETER_SYSTEM_PROMPT | |
# from prompt.gpt4_prompt import CODE_INTERPRETER_SYSTEM_PROMPT | |
from colorama import init, Fore, Style, Back | |
from rich.markdown import Markdown | |
import base64 | |
import openai | |
from retrying import retry | |
import requests | |
import logging | |
from termcolor import colored | |
# load from key file | |
with open("./openai_api_key.txt") as f: | |
OPENAI_API_KEY = key = f.read() | |
openai.api_key = OPENAI_API_KEY | |
from utils.cleaner import clean_error_msg | |
def remove_string(s): | |
pattern = r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}\.\d{6}:.*LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64\n" | |
return re.sub(pattern, "", s) | |
def clean_the_dialog(dialog, question): | |
question_idx = 0 | |
for idx, item in enumerate(dialog): | |
if item["content"] == question: | |
question_idx = idx | |
filtered_dialog = dialog[question_idx:] | |
user_qinit_dict = filtered_dialog[0] | |
answer_fuse_str = "\n".join([i["content"].strip() for i in filtered_dialog[1::2]]) | |
final_dialog_dict = [ | |
{"role": "user", "content": user_qinit_dict["content"]}, | |
{"role": "assistant", "content": answer_fuse_str}, | |
] | |
return final_dialog_dict | |
def get_embedding(text, model="text-embedding-ada-002"): | |
global counter | |
headers = { | |
"Authorization": f"Bearer {OPENAI_API_KEY}", # Make sure to replace with your OpenAI API key | |
"Content-Type": "application/json", | |
} | |
payload = {"input": text, "model": model} | |
response = requests.post( | |
"https://api.openai.com/v1/embeddings", headers=headers, json=payload | |
) | |
if response.status_code != 200: | |
raise Exception(f"Request failed with status {response.status_code}") | |
return np.array(response.json()["data"][0]["embedding"]) | |
class QueryRetrospect: | |
def __init__( | |
self, | |
data_directory="./gpt_data_gen_retrospect/", | |
embeddings_path="./gpt_data_gen_retrospect/embeddings.npy", | |
): | |
self.data_directory = data_directory | |
self.embeddings_path = embeddings_path | |
self.data = [] | |
self.embeddings = [] | |
if os.path.exists(embeddings_path): | |
print("++ Embedding Exists!") | |
self.embeddings = np.load(embeddings_path) | |
for fname in [i for i in os.listdir(data_directory) if i.endswith(".json")]: | |
with open( | |
os.path.join(data_directory, fname), | |
"r", | |
encoding="utf-8", | |
errors="replace", | |
) as f: | |
self.data.append(json.load(f)) | |
else: | |
only_files = [ | |
f | |
for f in os.listdir(data_directory) | |
if os.path.isfile(os.path.join(data_directory, f)) | |
and f.endswith(".json") | |
] | |
for fname in tqdm(only_files): | |
with open( | |
os.path.join(data_directory, fname), "r", encoding="cp1252" | |
) as f: | |
data_point = json.load(f) | |
self.data.append(data_point) | |
self.embeddings.append( | |
get_embedding(data_point["execution_result"]) | |
) | |
self.embeddings = np.array(self.embeddings) | |
self.save_embeddings() | |
print(f"++ Embedding Saved! {self.embeddings.shape}") | |
def save_embeddings(self): | |
np.save(self.embeddings_path, self.embeddings) | |
def __call__(self, query, top_k=3, VERBOSE: bool = False): | |
query_embedding = get_embedding(query) | |
similarities = np.dot(self.embeddings, query_embedding) | |
top_indices = similarities.argsort()[-top_k:][::-1] | |
return [self.data[i]["retrospection"] for i in top_indices] | |
class QueryRetrospectPrefix: | |
def __init__( | |
self, | |
model="gpt-4", | |
data_directory="./eval/gpt_mbpp_output", | |
embeddings_path="./eval/gpt_mbpp_output/embeddings.npy", | |
): | |
self.data_directory = data_directory | |
self.embeddings_path = embeddings_path | |
self.data = [] | |
self.embeddings = [] | |
if os.path.exists(embeddings_path): | |
print("++ Embedding Exists!") | |
self.embeddings = np.load(embeddings_path) | |
for fname in [i for i in os.listdir(data_directory) if i.endswith(".json")]: | |
with open( | |
os.path.join(data_directory, fname), | |
"r", | |
encoding="utf-8", | |
errors="replace", | |
) as f: | |
self.data.append(json.load(f)) | |
else: | |
only_files = [ | |
f | |
for f in os.listdir(data_directory) | |
if os.path.isfile(os.path.join(data_directory, f)) | |
and f.endswith(".json") | |
] | |
for fname in tqdm(only_files): | |
with open( | |
os.path.join(data_directory, fname), "r", encoding="cp1252" | |
) as f: | |
data_point = json.load(f) | |
print(f'Processing "{data_point[1]["content"]}" ...') | |
self.data.append(data_point) | |
self.embeddings.append(get_embedding(data_point[1]["content"])) | |
self.embeddings = np.array(self.embeddings) | |
self.save_embeddings() | |
print(f"++ Embedding Saved! {self.embeddings.shape}") | |
self.model = model | |
self.dialog = [ | |
{ | |
"role": "system", | |
"content": "You are retrospection GPT. retrospect from the given data.", | |
}, | |
{ | |
"role": "user", | |
"content": 'Current Question:\n\nWrite a Python function to solve the following task:\n\nfrom typing import List\n\ndef cum_sum(numbers: List[int]) -> List[int]:\n """\n From a given list of integers, generate a list representing the cumulative sum of elements at each index.\n >>> cum_sum([1, 2, 3, 4])\n [1, 3, 6, 10]\n """\n\nRetrieved Trajectories : \nIn a past interaction, a function named running_average was provided to calculate the running average of a list of numbers.\n\n```python\ndef running_average(numbers: List[int]) -> List[float]:\n total = 0\n averages = []\n for i, num in enumerate(numbers):\n total += num\n averages.append(total / (i+1))\n return averages\n\nprint(running_average([1,2,3,4])) # expected [1.0, 1.5, 2.0, 2.5]\n```\n```RESULT\n[1.0, 1.5, 2.0, 2.5]\n```\nThe output is expected. \n\n', | |
}, | |
{ | |
"role": "assistant", | |
"content": "From previous similar questions :\nThe `running_average` function highlights an important concept of maintaining a running or cumulative value (total) as one iterates over the list. This is directly applicable to the cum_sum problem.\n\nApplication to the Question:\nFor the cum_sum function, one needs to maintain a cumulative total of the elements as we traverse through the list. The running_average function is most closely related since it involves accumulating a total and storing intermediate results. By adapting this logic (i.e., excluding the division operation to compute the average), one can easily derive the cumulative sum solution.", | |
}, | |
] | |
self.response = "" | |
def ChatCompletion(self): | |
try: | |
self.response = openai.ChatCompletion.create( | |
model=self.model, messages=self.dialog, temperature=0.2, top_p=0.9 | |
) | |
except Exception as e: | |
print(f"error while OPENAI api call {e} {self.response}") | |
def save_embeddings(self): | |
np.save(self.embeddings_path, self.embeddings) | |
def __call__(self, query, top_k=3, VERBOSE: bool = False): | |
query_embedding = get_embedding(query) | |
similarities = np.dot(self.embeddings, query_embedding) | |
top_indices = similarities.argsort()[-top_k:][::-1] | |
top_i = top_indices[0] | |
prior_traj = self.data[top_i][-1]["content"] | |
ask_dict = { | |
"role": "user", | |
"content": f"Current Question:\n\n{query}\n\nRetrieved Trajectories :\n{prior_traj}", | |
} | |
# print(f"From prior experience:\n{prior_traj}\n\nCurrent Question:\n{query}\n") | |
self.dialog.append(ask_dict) | |
self.ChatCompletion() | |
return self.response["choices"][0]["message"]["content"] | |
class RetrospectiveGPTCodeInterpreter(BaseCodeInterpreter): | |
def __init__(self, model="gpt-4"): | |
self.model = model | |
self.dialog = [ | |
# {"role": "system", "content": CODE_INTERPRETER_SYSTEM_PROMPT }, | |
{ | |
"role": "system", | |
"content": CODE_INTERPRETER_SYSTEM_PROMPT, | |
}, | |
# {"role": "user", "content": "How can I use BeautifulSoup to scrape a website and extract all the URLs on a page?"}, | |
# {"role": "assistant", "content": "I think I need to use beatifulsoup to find current korean president,"} | |
] | |
# self.dialog += few_shot_4 | |
self.response = None | |
assert os.path.isfile( | |
"./openai_api_key.txt" | |
), "The openai_api_key.txt file could not be found. Please make sure it is in the same directory as this script, and that it contains your OpenAI API key." | |
# load from key file | |
with open("./openai_api_key.txt") as f: | |
OPENAI_API_KEY = f.read() | |
openai.api_key = OPENAI_API_KEY | |
self.nb = JupyterNotebook() | |
out = self.nb.add_and_run(TOOLS_CODE) # tool import | |
# retrospections | |
self.retrospector = QueryRetrospectPrefix() | |
def get_response_content(self): | |
if self.response: | |
return self.response["choices"][0]["message"]["content"] | |
else: | |
return None | |
def ChatCompletion(self): | |
try: | |
self.response = openai.ChatCompletion.create( | |
model=self.model, messages=self.dialog, temperature=0.2, top_p=0.9 | |
) | |
except Exception as e: | |
print(f"error while OPENAI api call {e}") | |
def save_dialog(self, path: str = "./output/dialog.json"): | |
with open(path, "w") as f: | |
json.dump(self.dialog, f) | |
print(f" ++Dialog saved to [{path}]") | |
def close(self): | |
""" | |
close jupyter notebook, and this class instance | |
""" | |
self.nb.close() | |
def chat( | |
self, | |
user_message: str, | |
VERBOSE: bool = False, | |
MAX_TRY: int = 6, | |
code_exec_prefix: str = "", | |
feedback_prompt: str = "", | |
append_result: bool = True, | |
use_retrospect: bool = True, | |
): | |
prefix_retrospection = self.retrospector(query=user_message) | |
self.dialog.append( | |
{"role": "user", "content": f"{prefix_retrospection}\n\n{user_message}"} | |
) | |
init_feedback = copy.deepcopy(feedback_prompt) | |
code_block_output = "" | |
attempt = 0 | |
img_data = None | |
if VERBOSE: | |
print( | |
"###Retrospection : " | |
+ Fore.BLUE | |
+ Back.WHITE | |
+ Style.BRIGHT | |
+ prefix_retrospection | |
+ Style.RESET_ALL | |
) | |
print( | |
"###User : " + Fore.BLUE + Style.BRIGHT + user_message + Style.RESET_ALL | |
) | |
print("\n###Assistant : ") | |
for i in range(MAX_TRY): | |
# GPT response | |
self.ChatCompletion() | |
# Get code block | |
generated_text = self.get_response_content() | |
generated_code_blocks = self.extract_code_blocks(generated_text) | |
# execute code | |
if len(generated_code_blocks) > 0: | |
# Find the position of the first code block in the last answer | |
first_code_block_pos = ( | |
generated_text.find(generated_code_blocks[0]) | |
if generated_code_blocks | |
else -1 | |
) | |
text_before_first_code_block = ( | |
generated_text | |
if first_code_block_pos == -1 | |
else generated_text[:first_code_block_pos] | |
) | |
if VERBOSE: | |
print(Fore.GREEN + text_before_first_code_block + Style.RESET_ALL) | |
if VERBOSE: | |
print( | |
Fore.YELLOW | |
+ generated_code_blocks[0] | |
+ "\n```\n" | |
+ Style.RESET_ALL | |
) | |
code_block_output, error_flag = self.execute_code_and_return_output( | |
generated_code_blocks[0] | |
) | |
code_block_output = f"{code_block_output}" | |
if code_block_output is not None: | |
code_block_output = code_block_output.strip() | |
code_block_output = remove_string(code_block_output) | |
if len(code_block_output) > 500: | |
code_block_output = ( | |
code_block_output[:200] + "⋯(skip)⋯" + code_block_output[-200:] | |
) | |
code_block_output_str = f"\n```RESULT\n{code_block_output}\n```\n" | |
if append_result: | |
gen_final = f"{text_before_first_code_block}{generated_code_blocks[0]}\n```{code_block_output_str}" | |
if VERBOSE: | |
print( | |
Fore.LIGHTBLACK_EX + code_block_output_str + Style.RESET_ALL | |
) | |
else: | |
gen_final = ( | |
f"{text_before_first_code_block}{generated_code_blocks[0]}\n```" | |
) | |
self.dialog.append( | |
{ | |
"role": "assistant", | |
"content": gen_final, | |
} | |
) | |
feedback_prompt = f"{init_feedback}\nif you accomplish the instruction just say <done>\nIf not keep going." | |
if VERBOSE: | |
print(Fore.MAGENTA + feedback_prompt + Style.RESET_ALL) | |
feedback_dict = { | |
"role": "user", | |
"content": feedback_prompt, | |
} | |
self.dialog.append(feedback_dict) | |
else: | |
if "<done>" in generated_text: | |
generated_text = generated_text.split("<done>")[0].strip() | |
if len(generated_text) <= 0: | |
break | |
if VERBOSE: | |
print(Fore.GREEN + generated_text + Style.RESET_ALL) | |
self.dialog.append( | |
{ | |
"role": "assistant", | |
"content": f"{generated_text}", | |
} | |
) | |
break | |
self.dialog = [self.dialog[0]] + clean_the_dialog( | |
self.dialog, question=f"{prefix_retrospection}\n\n{user_message}" | |
) # delete retrospections after generation step | |
return self.dialog[-1] | |
if __name__ == "__main__": | |
import pickle | |
import random | |
from tqdm import tqdm | |
# python3 -m code_interpreter.RetrospectiveGPTCodeInterpreter | |
retro_interpreter = RetrospectiveGPTCodeInterpreter(model="gpt-4") | |
instruction = """ | |
Write a Python script to solve the following problem: | |
def get_row(lst, x): | |
\"\"\" | |
You are given a 2 dimensional data, as a nested lists, | |
which is similar to matrix, however, unlike matrices, | |
each row may contain a different number of columns. | |
Given lst, and integer x, find integers x in the list, | |
and return list of tuples, [(x1, y1), (x2, y2) ...] such that | |
each tuple is a coordinate - (row, columns), starting with 0. | |
Sort coordinates initially by rows in ascending order. | |
Also, sort coordinates of the row by columns in descending order. | |
Examples: | |
get_row([ | |
[1,2,3,4,5,6], | |
[1,2,3,4,1,6], | |
[1,2,3,4,5,1] | |
], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] | |
get_row([], 1) == [] | |
get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] | |
\"\"\" | |
Ensure the solution is verified by printing the expected output. | |
""" | |
# instruction = "Can you make a image of astraunaut in the garden?" | |
# example | |
retro_interpreter.chat( | |
user_message=instruction, | |
MAX_TRY=5, | |
use_retrospect=True, | |
feedback_prompt="Ensure the output matches the expected result, taking into account any corner cases. If discrepancies arise, pinpoint where you went wrong. Then, refine the code to achieve the desired outcome.", | |
VERBOSE=True, | |
) | |