Upload 2 files
Browse files- app.py +35 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
|
5 |
+
# Use caching to optimize resource usage
|
6 |
+
@st.cache_resource
|
7 |
+
def load_model():
|
8 |
+
model_name = 'cardiffnlp/twitter-xlm-roberta-base-sentiment'
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
12 |
+
return tokenizer, model, labels
|
13 |
+
|
14 |
+
tokenizer, model, labels = load_model()
|
15 |
+
|
16 |
+
def analyze_sentiment(text):
|
17 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True)
|
18 |
+
with torch.no_grad():
|
19 |
+
outputs = model(**inputs)
|
20 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
21 |
+
sentiment = labels[torch.argmax(probs)]
|
22 |
+
confidence = torch.max(probs).item()
|
23 |
+
return sentiment, confidence
|
24 |
+
|
25 |
+
st.title('Multilingual Sentiment Analysis')
|
26 |
+
|
27 |
+
text = st.text_area('Enter text in any language:')
|
28 |
+
|
29 |
+
if st.button('Analyze'):
|
30 |
+
if text:
|
31 |
+
sentiment, confidence = analyze_sentiment(text)
|
32 |
+
st.write(f"**Sentiment:** {sentiment}")
|
33 |
+
st.write(f"**Confidence:** {confidence:.2f}")
|
34 |
+
else:
|
35 |
+
st.write("Please enter some text to analyze.")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
sentencepiece
|