File size: 13,563 Bytes
58d92fd
 
 
fa2856c
6e800d5
58d92fd
 
 
 
 
 
 
fa2856c
58d92fd
 
 
 
6e800d5
 
 
fa2856c
58d92fd
6e800d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d92fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa2856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e800d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa2856c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e800d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d92fd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import unittest
import numpy as np
from aip_trainer import WordMatching
from tests.lambdas.test_lambdaSpeechToScore import set_seed
from tests import constants_wordmatching as const


class TestWordMatching(unittest.TestCase):

    def test_get_word_distance_matrix(self):
        words_estimated = ["hello", "world"]
        words_real = ["hello", "word"]
        expected_matrix = np.array([[0., 5.], [4., 1.], [5., 4.]])
        result_matrix = WordMatching.get_word_distance_matrix(words_estimated, words_real)
        np.testing.assert_array_equal(result_matrix, expected_matrix)

    def test_get_best_path_from_distance_matrix(self):
        for word_distance_matrix, expected_result_indices in const.get_best_path_from_distance_matrix_constants:
            set_seed()
            result_indices = WordMatching.get_best_path_from_distance_matrix(word_distance_matrix)
            np.testing.assert_array_equal(result_indices, expected_result_indices)

    def test_get_best_path_from_distance_matrix_with_inf_values(self):        
        word_distance_matrix = np.array([[np.inf, 1, 2]])
        result_indices = WordMatching.get_best_path_from_distance_matrix(word_distance_matrix)
        self.assertEqual(result_indices, [])

        word_distance_matrix = np.array([[-1, np.inf, 3]])
        result_indices = WordMatching.get_best_path_from_distance_matrix(word_distance_matrix)
        self.assertEqual(result_indices, [])
        
        word_distance_matrix = np.array([[2, -1, np.inf]])
        result_indices = WordMatching.get_best_path_from_distance_matrix(word_distance_matrix)
        self.assertEqual(result_indices, [])
        
        word_distance_matrix = np.array([[np.inf, 1, 2], [1, np.inf, 3], [2, 3, np.inf], [-1, -np.inf, 1]])
        result_indices = WordMatching.get_best_path_from_distance_matrix(word_distance_matrix)
        self.assertEqual(result_indices, [])

    def test_get_resulting_string(self):
        mapped_indices = np.array([0, 1])
        words_estimated = ["hello", "world"]
        words_real = ["hello", "word"]
        expected_words = ["hello", "world"]
        expected_indices = [0, 1]
        result_words, result_indices = WordMatching.get_resulting_string(mapped_indices, words_estimated, words_real)
        self.assertEqual(result_words, expected_words)
        self.assertEqual(result_indices, expected_indices)

    def test_getWhichLettersWereTranscribedCorrectly(self):
        real_word = "hello"
        transcribed_word = "hxllo"
        expected_result = [1, 0, 1, 1, 1]
        result = WordMatching.getWhichLettersWereTranscribedCorrectly(real_word, transcribed_word)
        self.assertEqual(result, expected_result)

    def test_get_best_mapped_words(self):
        words_estimated = ["hello", "world"]
        words_real = ["hello", "word"]
        expected_words = ["hello", "world"]
        expected_indices = [0, 1]
        result_words, result_indices = WordMatching.get_best_mapped_words(words_estimated, words_real)
        self.assertEqual(result_words, expected_words)
        self.assertEqual(result_indices, expected_indices)

        expected_mapped_letters = ['e', 's', 's', 'e', 'n', '-']
        expected_mapped_words_indices = [np.int64(0), np.int64(1), np.int64(2), np.int64(3), np.int64(4), -1]
        output_mapped_letters, output_mapped_words_indices = WordMatching.get_best_mapped_words("essen", "essen?")
        assert output_mapped_letters == expected_mapped_letters
        assert output_mapped_words_indices == expected_mapped_words_indices

    def test_get_word_distance_matrix_with_empty_lists(self):
        words_estimated = []
        words_real = []
        expected_matrix = np.arange(0).reshape((1, 0))
        result_matrix = WordMatching.get_word_distance_matrix(words_estimated, words_real)
        np.testing.assert_array_equal(result_matrix, expected_matrix)

    def test_get_word_distance_matrix_with_different_lengths(self):
        words_estimated = ["hello"]
        words_real = ["hello", "world"]
        expected_matrix = np.array([[0., 4.], [5., 5.]])
        result_matrix = WordMatching.get_word_distance_matrix(words_estimated, words_real)
        np.testing.assert_array_equal(result_matrix, expected_matrix)

    def test_get_best_path_from_distance_matrix_with_empty_matrix_indexerror(self):
        word_distance_matrix = np.array([])
        with self.assertRaises(IndexError):
            try:
                WordMatching.get_best_path_from_distance_matrix(word_distance_matrix)
            except IndexError as e:
                msg = "tuple index out of range"
                assert msg in str(e)
                raise e

    def test_getWhichLettersWereTranscribedCorrectly_with_empty_strings(self):
        real_word = ""
        transcribed_word = ""
        expected_result = []
        result = WordMatching.getWhichLettersWereTranscribedCorrectly(real_word, transcribed_word)
        self.assertEqual(result, expected_result)

    def test_getWhichLettersWereTranscribedCorrectly_with_different_lengths(self):
        real_word = "hello"
        transcribed_word = "hello oo"
        expected_result = [1, 1, 1, 1, 1]
        result = WordMatching.getWhichLettersWereTranscribedCorrectly(real_word, transcribed_word)
        self.assertEqual(result, expected_result)

    def test_getWhichLettersWereTranscribedCorrectly_wrong_number_elements_mapped_letters(self):
        word_real = "ich"
        mapped_letters=['i', 'c', 'h', "z"]
        is_letter_correct1 = WordMatching.getWhichLettersWereTranscribedCorrectly(word_real, mapped_letters)  # , mapped_letters_indices)
        self.assertEqual(is_letter_correct1, [1, 1, 1])
        
    def test_getWhichLettersWereTranscribedCorrectly_wrong_number_elements_mapped_letters(self):
        word_real = "ichh"
        mapped_letters=['i', 'c', 'h']
        with self.assertRaises(IndexError):
            try:
                WordMatching.getWhichLettersWereTranscribedCorrectly(word_real, mapped_letters)  # , mapped_letters_indices)
            except IndexError as e:
                msg = 'list index out of range'
                assert msg in str(e)
                raise e

    def test_get_best_mapped_words_with_empty_lists(self):
        expected_words = ["?"]
        expected_indices = [0]
        result_words, result_indices = WordMatching.get_best_mapped_words("?", "-")
        self.assertEqual(result_words, expected_words)
        self.assertEqual(result_indices, expected_indices)
        expected_words = ['b', 'i', 'n', '-']
        expected_indices = [np.int64(0), np.int64(1), np.int64(2), -1]
        result_words, result_indices = WordMatching.get_best_mapped_words("bin", "bind")
        self.assertEqual(result_words, expected_words)
        self.assertEqual(result_indices, expected_indices)

    def test_get_best_mapped_words_with_different_lengths(self):
        result_words, result_indices = WordMatching.get_best_mapped_words("bin", "")
        self.assertEqual(result_words, [])
        self.assertEqual(result_indices, [])

    def test_get_best_mapped_words_with_word_estimated_empty_real_word_not_empty(self):
        result_words, result_indices = WordMatching.get_best_mapped_words("", "bin")
        self.assertEqual(result_words, ['', '-', '-'])
        self.assertEqual(result_indices, [-1, -1, -1])

    def test_get_best_mapped_words_with_word_estimated_real_word_both_empty(self):
        try:
            with self.assertRaises(IndexError):
                try:
                    WordMatching.get_best_mapped_words("", "")
                except IndexError as ie:
                    print("raised IndexError...")
                    msg = "index -1 is out of bounds for axis 1 with size 0"
                    assert msg in str(ie)
                    raise ie
        except AssertionError:
            # for some reason executing the test in debug mode from Visual Studio Code raises an AssertionError instead of an IndexError
            print("raised AssertionError instead than IndexError...")
            with self.assertRaises(AssertionError):
                try:
                    WordMatching.get_best_mapped_words("", "")
                except AssertionError as ae:
                    msg = "code object dtw_low at "
                    assert msg in str(ae)
                    raise ae

    def test_get_best_mapped_words_survived(self):
        set_seed()

        word_real = "habe"
        for word_estimated, expected_letters, expected_indices in [
            ("habe", ["h", "a", "b", "e"], [0, 1, 2, 3]),
            ("hobe", ["h", "-", "b", "e"], [0, -1, 2, 3]),
            ("hone", ["h", "-", "-", "e"], [0, -1, -1, 3]),
            ("honi", ["h", "-", "-", "-"], [0, -1, -1, -1]),
            ("koni", ["k", "-", "-", "-"], [0, -1, -1, -1]),
            ("kabe", ["k", "a", "b", "e"], [0, 1, 2, 3]),
            ("kane", ["k", "a", "-", "e"], [0, 1, -1, 3]),
        ]:
            result_words, result_indices = WordMatching.get_best_mapped_words(word_estimated, word_real)
            self.assertEqual(result_words, expected_letters)
            self.assertEqual(result_indices, expected_indices)

    def test_inner_get_resulting_string(self):
        error = 99999
        best_possible_combination = ''
        best_possible_idx = -1
        position_of_real_word_indices = np.array([2, 3])
        word_idx = 2
        words_estimated = ['ich', 'bin', 'om', 'werbst', 'du', 'wille', 'freude', 'wo', 'no', 'wie', 'essen']
        words_real = ['Ich', 'bin', 'Tom,', 'wer', 'bist', 'du?', 'Viel', 'Freude.', 'Wollen', 'wir', 'essen?']
        best_possible_combination, best_possible_idx = WordMatching.inner_get_resulting_string(
                best_possible_combination, best_possible_idx, error, position_of_real_word_indices,
                word_idx, words_estimated, words_real
            )
        self.assertEqual(best_possible_combination, "om")
        self.assertEqual(best_possible_idx, 2)
    
    def test_inner_get_resulting_string_one_single_word(self):
        error = 99999
        best_possible_combination = ''
        best_possible_idx = -1
        position_of_real_word_indices = np.array([2, 3])
        word_idx = 2
        words_estimated = ['I', "hov-", 'inconsistencess']
        words_real = ['I', "have", 'inconsistencies']
        best_possible_combination, best_possible_idx = WordMatching.inner_get_resulting_string(
                best_possible_combination, best_possible_idx, error, position_of_real_word_indices,
                word_idx, words_estimated, words_real
            )
        self.assertEqual(best_possible_combination, "inconsistencess")
        self.assertEqual(best_possible_idx, 2)

    def test_inner_get_resulting_string_empty_args(self):
        error = 99999
        best_possible_combination = ''
        best_possible_idx = -1
        best_possible_combination2, best_possible_idx2 = WordMatching.inner_get_resulting_string(
            best_possible_combination, best_possible_idx, error, np.array([2, 3]), 0, [], [])
        self.assertEqual(best_possible_combination2, "")
        self.assertEqual(best_possible_idx2, -1)

    def test_get_resulting_string(self):
        set_seed()
        mapped_indices = np.array([0, 1])
        words_estimated = ["hollo", "uorld"]
        words_real = ["hello", "word"]
        expected_words = ['hollo', 'uorld']
        expected_indices = [0, 1]
        result_words, result_indices = WordMatching.get_resulting_string(mapped_indices, words_estimated, words_real)
        self.assertEqual(result_words, expected_words)
        self.assertEqual(result_indices, expected_indices)

        mapped_indices = np.array([1, 1])
        expected_words = ['-', 'uorld']
        expected_indices = [-1, 1]
        result_words, result_indices = WordMatching.get_resulting_string(mapped_indices, words_estimated, words_real)
        self.assertEqual(result_words, expected_words)
        self.assertEqual(result_indices, expected_indices)

        mapped_indices = np.array([0, 0])
        expected_words = ['hollo', '-']
        expected_indices = [0, -1]
        result_words, result_indices = WordMatching.get_resulting_string(mapped_indices, words_estimated, words_real)
        self.assertEqual(result_words, expected_words)
        self.assertEqual(result_indices, expected_indices)

        mapped_indices = np.array([0, -1])
        expected_words = ["hollo", "-"]
        expected_indices = [0, -1]
        result_words, result_indices = WordMatching.get_resulting_string(mapped_indices, words_estimated, words_real)
        self.assertEqual(result_words, expected_words)
        self.assertEqual(result_indices, expected_indices)
        
        mapped_indices = np.array([-1, -1])
        expected_words = ["-", "-"]
        expected_indices = [-1, -1]
        result_words, result_indices = WordMatching.get_resulting_string(mapped_indices, words_estimated, words_real)
        self.assertEqual(result_words, expected_words)
        self.assertEqual(result_indices, expected_indices)

    def test_get_resulting_string_with_empty_lists(self):
        mapped_indices = np.array([])
        words_estimated = []
        words_real = []
        expected_words = []
        expected_indices = []
        result_words, result_indices = WordMatching.get_resulting_string(mapped_indices, words_estimated, words_real)
        self.assertEqual(result_words, expected_words)
        self.assertEqual(result_indices, expected_indices)


if __name__ == '__main__':
    unittest.main()