File size: 6,903 Bytes
937bd43
5885496
3d9fba4
 
5885496
 
3d9fba4
e5c9ee0
5885496
e5c9ee0
 
 
5885496
937bd43
5885496
 
 
937bd43
3d9fba4
 
 
e5c9ee0
3d9fba4
 
 
 
 
968fffb
3d9fba4
e5c9ee0
3d9fba4
937bd43
e5c9ee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c899f8b
3d9fba4
e5c9ee0
 
 
 
 
 
 
 
3d9fba4
 
 
e5c9ee0
 
 
 
 
3d9fba4
 
 
 
 
 
 
 
 
e5c9ee0
 
3d9fba4
 
e5c9ee0
 
3d9fba4
e5c9ee0
3d9fba4
 
e5c9ee0
 
3d9fba4
e5c9ee0
3d9fba4
 
 
937bd43
e5c9ee0
 
937bd43
e5c9ee0
937bd43
3d9fba4
 
 
 
 
 
 
 
 
 
e5c9ee0
 
 
 
 
 
 
 
 
 
 
937bd43
 
e5c9ee0
 
 
 
 
937bd43
e5c9ee0
 
 
937bd43
 
e5c9ee0
 
 
3d9fba4
 
e5c9ee0
 
3d9fba4
 
 
 
 
 
937bd43
e5c9ee0
 
 
937bd43
3d9fba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ee0
3d9fba4
e5c9ee0
3d9fba4
 
 
 
 
 
 
937bd43
 
 
 
 
 
 
 
 
3d9fba4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import logging
import os
import sys

import cv2
import numpy as np
import torch
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor

from model.LISA import LISAForCausalLM
from model.llava import conversation as conversation_lib
from model.llava.mm_utils import tokenizer_image_token
from model.segment_anything.utils.transforms import ResizeLongestSide
from utils import app_helpers, utils


def main(args):
    args = app_helpers.parse_args(args)
    os.makedirs(args.vis_save_path, exist_ok=True)

    # Create model
    tokenizer = AutoTokenizer.from_pretrained(
        args.version,
        cache_dir=None,
        model_max_length=args.model_max_length,
        padding_side="right",
        use_fast=False,
    )
    tokenizer.pad_token = tokenizer.unk_token
    args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0]

    torch_dtype = change_torch_dtype_by_precision(args.precision)

    kwargs = {"torch_dtype": torch_dtype}
    if args.load_in_4bit:
        kwargs.update(
            {
                "torch_dtype": torch.half,
                "load_in_4bit": True,
                "quantization_config": BitsAndBytesConfig(
                    load_in_4bit=True,
                    bnb_4bit_compute_dtype=torch.float16,
                    bnb_4bit_use_double_quant=True,
                    bnb_4bit_quant_type="nf4",
                    llm_int8_skip_modules=["visual_model"],
                ),
            }
        )
    elif args.load_in_8bit:
        kwargs.update(
            {
                "torch_dtype": torch.half,
                "quantization_config": BitsAndBytesConfig(
                    llm_int8_skip_modules=["visual_model"],
                    load_in_8bit=True,
                ),
            }
        )

    model = LISAForCausalLM.from_pretrained(
        args.version, low_cpu_mem_usage=True, vision_tower=args.vision_tower, seg_token_idx=args.seg_token_idx, **kwargs
    )

    model.config.eos_token_id = tokenizer.eos_token_id
    model.config.bos_token_id = tokenizer.bos_token_id
    model.config.pad_token_id = tokenizer.pad_token_id

    model.get_model().initialize_vision_modules(model.get_model().config)
    vision_tower = model.get_model().get_vision_tower()
    vision_tower.to(dtype=torch_dtype)

    if args.precision == "bf16":
        model = model.bfloat16().cuda()
    elif (
        args.precision == "fp16" and (not args.load_in_4bit) and (not args.load_in_8bit)
    ):
        vision_tower = model.get_model().get_vision_tower()
        model.model.vision_tower = None
        import deepspeed

        model_engine = deepspeed.init_inference(
            model=model,
            dtype=torch.half,
            replace_with_kernel_inject=True,
            replace_method="auto",
        )
        model = model_engine.module
        model.model.vision_tower = vision_tower.half().cuda()
    elif args.precision == "fp32":
        model = model.float().cuda()

    vision_tower = model.get_model().get_vision_tower()
    vision_tower.to(device=args.local_rank)

    clip_image_processor = CLIPImageProcessor.from_pretrained(model.config.vision_tower)
    transform = ResizeLongestSide(args.image_size)

    model.eval()

    while True:
        conv = conversation_lib.conv_templates[args.conv_type].copy()
        conv.messages = []

        prompt = input("Please input your prompt: ")
        prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + prompt
        if args.use_mm_start_end:
            replace_token = (
                utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN
            )
            prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token)

        conv.append_message(conv.roles[0], prompt)
        conv.append_message(conv.roles[1], "")
        prompt = conv.get_prompt()

        image_path = input("Please input the image path: ")
        if not os.path.exists(image_path):
            print("File not found in {}".format(image_path))
            continue

        image_np = cv2.imread(image_path)
        image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
        original_size_list = [image_np.shape[:2]]

        image_clip = (
            clip_image_processor.preprocess(image_np, return_tensors="pt")[
                "pixel_values"
            ][0]
            .unsqueeze(0)
            .cuda()
        )
        logging.info(f"image_clip type: {type(image_clip)}.")
        image_clip = app_helpers.set_image_precision_by_args(image_clip, args.precision)

        image = transform.apply_image(image_np)
        resize_list = [image.shape[:2]]

        image = (
            app_helpers.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
            .unsqueeze(0)
            .cuda()
        )
        logging.info(f"image_clip type: {type(image_clip)}.")
        image = app_helpers.set_image_precision_by_args(image, args.precision)

        input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
        input_ids = input_ids.unsqueeze(0).cuda()

        output_ids, pred_masks = model.evaluate(
            image_clip,
            image,
            input_ids,
            resize_list,
            original_size_list,
            max_new_tokens=512,
            tokenizer=tokenizer,
        )
        output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]

        text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
        text_output = text_output.replace("\n", "").replace("  ", " ")
        logging.info(f"text_output: {text_output}.")

        for i, pred_mask in enumerate(pred_masks):
            if pred_mask.shape[0] == 0:
                continue

            pred_mask = pred_mask.detach().cpu().numpy()[0]
            pred_mask = pred_mask > 0

            save_path = "{}/{}_mask_{}.jpg".format(
                args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
            )
            cv2.imwrite(save_path, pred_mask * 100)
            print("{} has been saved.".format(save_path))

            save_path = "{}/{}_masked_img_{}.jpg".format(
                args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
            )
            save_img = image_np.copy()
            save_img[pred_mask] = (
                image_np * 0.5
                + pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
            )[pred_mask]
            save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR)
            cv2.imwrite(save_path, save_img)
            print("{} has been saved.".format(save_path))


def change_torch_dtype_by_precision(precision):
    torch_dtype = torch.float32
    if precision == "bf16":
        torch_dtype = torch.bfloat16
    elif precision == "fp16":
        torch_dtype = torch.half
    return torch_dtype


if __name__ == "__main__":
    main(sys.argv[1:])