lisa-on-cuda / utils /reason_seg_dataset.py
X-Lai
Refactor the code to support hf model module format & support grefcoco dataset
e5c9ee0
raw
history blame
7.94 kB
import glob
import json
import os
import random
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor
from model.llava import conversation as conversation_lib
from model.segment_anything.utils.transforms import ResizeLongestSide
from .data_processing import get_mask_from_json
from .utils import (ANSWER_LIST, DEFAULT_IMAGE_TOKEN,
EXPLANATORY_QUESTION_LIST, LONG_QUESTION_LIST,
SHORT_QUESTION_LIST)
class ReasonSegDataset(torch.utils.data.Dataset):
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
img_size = 1024
ignore_label = 255
def __init__(
self,
base_image_dir,
tokenizer,
vision_tower,
samples_per_epoch=500 * 8 * 2 * 10,
precision: str = "fp32",
image_size: int = 224,
num_classes_per_sample: int = 3,
exclude_val=False,
reason_seg_data="ReasonSeg|train",
explanatory=0.1,
):
self.exclude_val = exclude_val
self.reason_seg_data = reason_seg_data
self.samples_per_epoch = samples_per_epoch
self.explanatory = explanatory
self.num_classes_per_sample = num_classes_per_sample
self.base_image_dir = base_image_dir
self.image_size = image_size
self.tokenizer = tokenizer
self.precision = precision
self.transform = ResizeLongestSide(image_size)
self.clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
self.short_question_list = SHORT_QUESTION_LIST
self.long_question_list = LONG_QUESTION_LIST
self.answer_list = ANSWER_LIST
reason_seg_data, splits = reason_seg_data.split("|")
splits = splits.split("_")
images = []
for split in splits:
images_split = glob.glob(
os.path.join(
base_image_dir, "reason_seg", reason_seg_data, split, "*.jpg"
)
)
images.extend(images_split)
jsons = [path.replace(".jpg", ".json") for path in images]
self.reason_seg_data = (images, jsons)
print("number of reason_seg samples: ", len(images))
if explanatory != -1:
self.explanatory_question_list = EXPLANATORY_QUESTION_LIST
self.img_to_explanation = {}
with open(
os.path.join(
base_image_dir,
"reason_seg",
reason_seg_data,
"explanatory",
"train.json",
)
) as f:
items = json.load(f)
for item in items:
img_name = item["image"]
self.img_to_explanation[img_name] = {
"query": item["query"],
"outputs": item["outputs"],
}
print("len(self.img_to_explanation): ", len(self.img_to_explanation))
def __len__(self):
return self.samples_per_epoch
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - self.pixel_mean) / self.pixel_std
# Pad
h, w = x.shape[-2:]
padh = self.img_size - h
padw = self.img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def __getitem__(self, idx):
images, jsons = self.reason_seg_data
idx = random.randint(0, len(images) - 1)
image_path = images[idx]
json_path = jsons[idx]
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
ori_size = image.shape[:2]
# preprocess image for clip
image_clip = self.clip_image_processor.preprocess(image, return_tensors="pt")[
"pixel_values"
][0]
mask, sents, is_sentence = get_mask_from_json(json_path, image)
if len(sents) >= self.num_classes_per_sample:
sampled_inds = np.random.choice(
list(range(len(sents))), size=self.num_classes_per_sample, replace=False
)
else:
sampled_inds = list(range(len(sents)))
sampled_sents = np.vectorize(sents.__getitem__)(sampled_inds).tolist()
sampled_masks = [
(mask == 1).astype(np.float32) for _ in range(len(sampled_inds))
]
image = self.transform.apply_image(image) # preprocess image for sam
resize = image.shape[:2]
image_name = image_path.split("/")[-1]
if self.explanatory != -1 and image_name in self.img_to_explanation:
if random.random() < self.explanatory:
choice = 2
else:
choice = random.randint(0, 1)
questions = []
answers = []
for text in sampled_sents:
if is_sentence:
question_template = random.choice(self.long_question_list)
questions.append(question_template.format(sent=text))
else:
question_template = random.choice(self.short_question_list)
questions.append(question_template.format(class_name=text.lower()))
# add explanation if applicable
img_name = image_path.split("/")[-1]
if self.explanatory != -1 and img_name in self.img_to_explanation:
if choice == 0: # [SEG] token
answers.append(random.choice(self.answer_list))
elif choice == 1: # [SEG] token + text answer
image_name = image_path.split("/")[-1]
answer = self.img_to_explanation[image_name]["outputs"]
answer = random.choice(self.answer_list) + " {}".format(answer)
questions[-1] = (
DEFAULT_IMAGE_TOKEN
+ "\n"
+ text
+ " {}".format(random.choice(self.explanatory_question_list))
)
answers.append(answer)
elif choice == 2: # vanilla text answer
image_name = image_path.split("/")[-1]
answer = self.img_to_explanation[image_name]["outputs"]
questions[-1] = DEFAULT_IMAGE_TOKEN + "\n" + text
answers.append(answer)
else:
raise ValueError("Not implemented yet.")
else:
answers.append(random.choice(self.answer_list))
conversations = []
conv = conversation_lib.default_conversation.copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
i = 0
while i < len(questions):
conv.messages = []
conv.append_message(conv.roles[0], questions[i])
conv.append_message(conv.roles[1], answers[i])
conversations.append(conv.get_prompt())
i += 1
image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
image_name = image_path.split("/")[-1]
if (
self.explanatory != -1
and image_name in self.img_to_explanation
and choice == 2
):
masks = torch.rand(0, *ori_size)
label = torch.ones(ori_size) * self.ignore_label
else:
masks = np.stack(sampled_masks, axis=0)
masks = torch.from_numpy(masks)
label = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label
return (
image_path,
image,
image_clip,
conversations,
masks,
label,
resize,
questions,
sampled_sents,
)