File size: 20,012 Bytes
8ced4d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import argparse
import logging
import os
import re
from typing import Callable

import cv2
import gradio as gr
import nh3
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor

from lisa_on_cuda import app_logger
from lisa_on_cuda.LISA import LISAForCausalLM
from lisa_on_cuda.llava import conversation as conversation_lib
from lisa_on_cuda.llava.mm_utils import tokenizer_image_token
from lisa_on_cuda.segment_anything.utils.transforms import ResizeLongestSide
from . import constants, utils

placeholders = utils.create_placeholder_variables()


def get_device_map_kwargs(device_map="auto", device="cuda"):
    kwargs = {"device_map": device_map}
    if device != "cuda":
        kwargs['device_map'] = {"": device}
    return kwargs


def parse_args(args_to_parse, internal_logger=None):
    if internal_logger is None:
        internal_logger = app_logger
    internal_logger.info(f"ROOT_PROJECT:{utils.PROJECT_ROOT_FOLDER}, default vis_output:{utils.VIS_OUTPUT}.")
    parser = argparse.ArgumentParser(description="LISA chat")
    parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1-explanatory")
    parser.add_argument("--vis_save_path", default=str(utils.VIS_OUTPUT), type=str)
    parser.add_argument(
        "--precision",
        default="fp16",
        type=str,
        choices=["fp32", "bf16", "fp16"],
        help="precision for inference",
    )
    parser.add_argument("--image_size", default=1024, type=int, help="image size")
    parser.add_argument("--model_max_length", default=512, type=int)
    parser.add_argument("--lora_r", default=8, type=int)
    parser.add_argument(
        "--vision-tower", default="openai/clip-vit-large-patch14", type=str
    )
    parser.add_argument("--local-rank", default=0, type=int, help="node rank")
    parser.add_argument("--load_in_8bit", action="store_true", default=False)
    parser.add_argument("--load_in_4bit", action="store_true", default=True)
    parser.add_argument("--use_mm_start_end", action="store_true", default=True)
    parser.add_argument(
        "--conv_type",
        default="llava_v1",
        type=str,
        choices=["llava_v1", "llava_llama_2"],
    )
    return parser.parse_args(args_to_parse)


def get_cleaned_input(input_str, internal_logger=None):
    if internal_logger is None:
        internal_logger = app_logger
    internal_logger.info(f"start cleaning of input_str: {input_str}.")
    input_str = nh3.clean(
        input_str,
        tags={
            "a",
            "abbr",
            "acronym",
            "b",
            "blockquote",
            "code",
            "em",
            "i",
            "li",
            "ol",
            "strong",
            "ul",
        },
        attributes={
            "a": {"href", "title"},
            "abbr": {"title"},
            "acronym": {"title"},
        },
        url_schemes={"http", "https", "mailto"},
        link_rel=None,
    )
    internal_logger.info(f"cleaned input_str: {input_str}.")
    return input_str


def set_image_precision_by_args(input_image, precision):
    if precision == "bf16":
        input_image = input_image.bfloat16()
    elif precision == "fp16":
        input_image = input_image.half()
    else:
        input_image = input_image.float()
    return input_image


def preprocess(
        x,
        pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
        pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
        img_size=1024,
) -> torch.Tensor:
    """Normalize pixel values and pad to a square input."""
    logging.info("preprocess started")
    # Normalize colors
    x = (x - pixel_mean) / pixel_std
    # Pad
    h, w = x.shape[-2:]
    padh = img_size - h
    padw = img_size - w
    x = F.pad(x, (0, padw, 0, padh))
    logging.info("preprocess ended")
    return x


def load_model_for_causal_llm_pretrained(
        version, torch_dtype, load_in_8bit, load_in_4bit, seg_token_idx, vision_tower,
        internal_logger: logging = None, device_map="auto", device="cuda"
):
    if internal_logger is None:
        internal_logger = app_logger
    internal_logger.debug(f"prepare kwargs, 4bit:{load_in_4bit}, 8bit:{load_in_8bit}.")
    kwargs_device_map = get_device_map_kwargs(device_map=device_map, device=device)
    kwargs = {"torch_dtype": torch_dtype, **kwargs_device_map}
    if load_in_4bit:
        kwargs.update(
            {
                "torch_dtype": torch.half,
                # "load_in_4bit": True,
                "quantization_config": BitsAndBytesConfig(
                    load_in_4bit=True,
                    bnb_4bit_compute_dtype=torch.float16,
                    bnb_4bit_use_double_quant=True,
                    bnb_4bit_quant_type="nf4",
                    llm_int8_skip_modules=["visual_model"],
                ),
            }
        )
    elif load_in_8bit:
        kwargs.update(
            {
                "torch_dtype": torch.half,
                "quantization_config": BitsAndBytesConfig(
                    llm_int8_skip_modules=["visual_model"],
                    load_in_8bit=True,
                ),
            }
        )
    internal_logger.debug(f"start loading model:{version}.")
    _model = LISAForCausalLM.from_pretrained(
        version,
        low_cpu_mem_usage=True,
        vision_tower=vision_tower,
        seg_token_idx=seg_token_idx,
        # try to avoid CUDA init RuntimeError on ZeroGPU huggingface hardware (injected into kwargs)
        **kwargs
    )
    internal_logger.debug("model loaded!")
    return _model


def get_model(args_to_parse, internal_logger: logging = None, inference_decorator: Callable = None, device_map="auto", device="cpu", device2="cuda"):
    """Load model and inference function with arguments. Compatible with ZeroGPU (spaces 0.30.2)

    Args:
        args_to_parse: default input arguments
        internal_logger: logger
        inference_decorator: inference decorator (now it's supported and tested ZeroGPU spaces.GPU decorator)
        device_map: device type needed for ZeroGPU cuda hw
        device: device type needed for ZeroGPU cuda hw
        device2: device type needed for ZeroGPU cuda hw, default to cpu to avoid bug on loading model

    Returns:
        inference function with LISA model
    """
    if internal_logger is None:
        internal_logger = app_logger
    internal_logger.info(f"starting model preparation, folder creation for path: {args_to_parse.vis_save_path}.")
    try:
        vis_save_path_exists = os.path.isdir(args_to_parse.vis_save_path)
        logging.info(f"vis_save_path_exists:{vis_save_path_exists}.")
        os.makedirs(args_to_parse.vis_save_path, exist_ok=True)
    except PermissionError as pex:
        internal_logger.info(f"PermissionError: {pex}, folder:{args_to_parse.vis_save_path}.")

    # global tokenizer, tokenizer
    # Create model
    internal_logger.info(f"creating tokenizer: {args_to_parse.version}, max_length:{args_to_parse.model_max_length}.")
    _tokenizer = AutoTokenizer.from_pretrained(
        args_to_parse.version,
        cache_dir=None,
        model_max_length=args_to_parse.model_max_length,
        padding_side="right",
        use_fast=False,
    )
    _tokenizer.pad_token = _tokenizer.unk_token
    internal_logger.info("tokenizer ok")
    args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
    torch_dtype = torch.float32
    if args_to_parse.precision == "bf16":
        torch_dtype = torch.bfloat16
    elif args_to_parse.precision == "fp16":
        torch_dtype = torch.half

    internal_logger.debug(f"start loading causal llm:{args_to_parse.version}...")
    _model = inference_decorator(
        load_model_for_causal_llm_pretrained(
            args_to_parse.version,
            torch_dtype=torch_dtype,
            load_in_8bit=args_to_parse.load_in_8bit,
            load_in_4bit=args_to_parse.load_in_4bit,
            seg_token_idx=args_to_parse.seg_token_idx,
            vision_tower=args_to_parse.vision_tower,
            device_map=device_map,  # try to avoid CUDA init RuntimeError on ZeroGPU huggingface hardware
            device=device
        )) if inference_decorator else load_model_for_causal_llm_pretrained(
        args_to_parse.version,
        torch_dtype=torch_dtype,
        load_in_8bit=args_to_parse.load_in_8bit,
        load_in_4bit=args_to_parse.load_in_4bit,
        seg_token_idx=args_to_parse.seg_token_idx,
        vision_tower=args_to_parse.vision_tower,
        device_map=device_map
    )
    internal_logger.debug("causal llm loaded!")

    _model.config.eos_token_id = _tokenizer.eos_token_id
    _model.config.bos_token_id = _tokenizer.bos_token_id
    _model.config.pad_token_id = _tokenizer.pad_token_id
    _model.get_model().initialize_vision_modules(_model.get_model().config)

    internal_logger.debug(f"start vision tower:{args_to_parse.vision_tower}...")
    _model, vision_tower = inference_decorator(
        prepare_model_vision_tower(_model, args_to_parse, torch_dtype)
    ) if inference_decorator else prepare_model_vision_tower(
        _model, args_to_parse, torch_dtype
    )
    internal_logger.debug(f"_model type:{type(_model)}, vision_tower type:{type(vision_tower)}.")
    # set device to "cuda" try to avoid CUDA init RuntimeError on ZeroGPU huggingface hardware
    vision_tower.to(device=device2)
    internal_logger.debug("vision tower loaded, prepare clip image processor...")
    _clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower)
    internal_logger.debug("clip image processor done.")
    _transform = ResizeLongestSide(args_to_parse.image_size)
    internal_logger.debug("start model evaluation...")
    inference_decorator(_model.eval()) if inference_decorator else _model.eval()
    internal_logger.info("model preparation ok!")
    return _model, _clip_image_processor, _tokenizer, _transform


def prepare_model_vision_tower(_model, args_to_parse, torch_dtype, internal_logger: logging = None):
    if internal_logger is None:
        internal_logger = app_logger
    internal_logger.debug(f"start vision tower preparation, torch dtype:{torch_dtype}, args_to_parse:{args_to_parse}.")
    vision_tower = _model.get_model().get_vision_tower()
    vision_tower.to(dtype=torch_dtype)
    if args_to_parse.precision == "bf16":
        internal_logger.debug(f"vision tower precision bf16? {args_to_parse.precision}, 1.")
        _model = _model.bfloat16().cuda()
    elif (
            args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit)
    ):
        internal_logger.debug(f"vision tower precision fp16? {args_to_parse.precision}, 2.")
        vision_tower = _model.get_model().get_vision_tower()
        _model.model.vision_tower = None
        import deepspeed

        model_engine = deepspeed.init_inference(
            model=_model,
            dtype=torch.half,
            replace_with_kernel_inject=True,
            replace_method="auto",
        )
        _model = model_engine.module
        _model.model.vision_tower = vision_tower.half().cuda()
    elif args_to_parse.precision == "fp32":
        internal_logger.debug(f"vision tower precision fp32? {args_to_parse.precision}, 3.")
        _model = _model.float().cuda()
    vision_tower = _model.get_model().get_vision_tower()
    internal_logger.debug("vision tower ok!")
    return _model, vision_tower


def get_inference_model_by_args(
        args_to_parse, internal_logger0: logging = None, inference_decorator: Callable = None, device_map="auto", device="cuda"
):
    """Load model and inference function with arguments. Compatible with ZeroGPU (spaces 0.30.2)

    Args:
        args_to_parse: default input arguments
        internal_logger0: logger
        inference_decorator: inference decorator (now it's supported and tested ZeroGPU spaces.GPU decorator)
        device_map: device type needed for ZeroGPU cuda hw
        device: device type needed for ZeroGPU cuda hw

    Returns:
        inference function with LISA model
    """
    if internal_logger0 is None:
        internal_logger0 = app_logger
    internal_logger0.info(f"args_to_parse:{args_to_parse}, creating model...")
    model, clip_image_processor, tokenizer, transform = get_model(args_to_parse, device_map=device_map, device=device)
    internal_logger0.info("created model, preparing inference function")
    no_seg_out = placeholders["no_seg_out"]

    def inference(
            input_str: str,
            input_image: str | np.ndarray,
            internal_logger: logging = None,
            embedding_key: str = None
    ):
        if internal_logger is None:
            internal_logger = app_logger

        # filter out special chars
        input_str = get_cleaned_input(input_str)
        internal_logger.info(f" input_str type: {type(input_str)}, input_image type: {type(input_image)}.")
        internal_logger.info(f"input_str: {input_str}, input_image: {type(input_image)}.")

        # input valid check
        if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
            output_str = f"[Error] Unprocessable Entity input: {input_str}."
            internal_logger.error(output_str)

            from fastapi import status
            from fastapi.responses import JSONResponse

            return JSONResponse(
                status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
                content={"msg": "Error - Unprocessable Entity"}
            )

        # Model Inference
        conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy()
        conv.messages = []

        prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + input_str
        if args_to_parse.use_mm_start_end:
            replace_token = (
                    utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN
            )
            prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token)

        conv.append_message(conv.roles[0], prompt)
        conv.append_message(conv.roles[1], "")
        prompt = conv.get_prompt()

        internal_logger.info("read and preprocess image.")
        image_np = input_image
        if isinstance(input_image, str):
            image_np = cv2.imread(input_image)
            image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
        original_size_list = [image_np.shape[:2]]
        internal_logger.debug("start clip_image_processor.preprocess")
        image_clip = (
            clip_image_processor.preprocess(image_np, return_tensors="pt")[
                "pixel_values"
            ][0]
            .unsqueeze(0)
            .cuda()
        )
        internal_logger.debug("done clip_image_processor.preprocess")
        internal_logger.info(f"image_clip type: {type(image_clip)}.")
        image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)

        image = transform.apply_image(image_np)
        resize_list = [image.shape[:2]]

        internal_logger.debug(f"starting preprocess image: {type(image_clip)}.")
        image = (
            preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
            .unsqueeze(0)
            .cuda()
        )
        internal_logger.info(f"done preprocess image:{type(image)}, image_clip type: {type(image_clip)}.")
        image = set_image_precision_by_args(image, args_to_parse.precision)

        input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
        input_ids = input_ids.unsqueeze(0).cuda()

        embedding_key = get_hash_array(embedding_key, image, internal_logger)
        internal_logger.info(f"start model evaluation with embedding_key {embedding_key}.")
        output_ids, pred_masks = model.evaluate(
            image_clip,
            image,
            input_ids,
            resize_list,
            original_size_list,
            max_new_tokens=512,
            tokenizer=tokenizer,
            model_logger=internal_logger,
            embedding_key=embedding_key
        )
        internal_logger.info("model evaluation done, start token decoding...")
        output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]

        text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
        text_output = text_output.replace("\n", "").replace("  ", " ")
        text_output = text_output.split("ASSISTANT: ")[-1]

        internal_logger.info(
            f"token decoding ended,found n {len(pred_masks)} prediction masks, "
            f"text_output type: {type(text_output)}, text_output: {text_output}."
        )
        output_image = no_seg_out
        output_mask = no_seg_out
        for i, pred_mask in enumerate(pred_masks):
            if pred_mask.shape[0] == 0 or pred_mask.shape[1] == 0:
                continue
            pred_mask = pred_mask.detach().cpu().numpy()[0]
            pred_mask_bool = pred_mask > 0
            output_mask = pred_mask_bool.astype(np.uint8) * 255

            output_image = image_np.copy()
            output_image[pred_mask_bool] = (
                    image_np * 0.5
                    + pred_mask_bool[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
            )[pred_mask_bool]

        output_str = f"ASSISTANT: {text_output} ..."
        internal_logger.info(f"output_image type: {type(output_mask)}.")
        return output_image, output_mask, output_str

    internal_logger0.info("prepared inference function.")
    internal_logger0.info(f"inference decorator none? {type(inference_decorator)}.")
    if inference_decorator:
        return inference_decorator(inference)

    return inference


def get_gradio_interface(
        fn_inference: Callable,
        args: str = None
):
    article_and_demo_parameters = constants.article
    if args is not None:
        article_and_demo_parameters = constants.demo_parameters
        args_dict = {arg: getattr(args, arg) for arg in vars(args)}
        for arg_k, arg_v in args_dict.items():
            print(f"arg_k:{arg_v}, arg_v:{arg_v}.")
            article_and_demo_parameters += " * " + "".join(f"{arg_k}: {arg_v};\n")

        print(f"args_dict:{args_dict}.")
        print(f"description_and_demo_parameters:{article_and_demo_parameters}.")
        article_and_demo_parameters += "\n\n" + constants.article

    return gr.Interface(
        fn_inference,
        inputs=[
            gr.Textbox(lines=1, placeholder=None, label="Text Instruction"),
            gr.Image(type="filepath", label="Input Image")
        ],
        outputs=[
            gr.Image(type="pil", label="segmentation Output"),
            gr.Image(type="pil", label="mask Output"),
            gr.Textbox(lines=1, placeholder=None, label="Text Output")
        ],
        title=constants.title,
        description=constants.description,
        article=article_and_demo_parameters,
        examples=constants.examples,
        allow_flagging="auto"
    )


def get_hash_array(embedding_key: str, arr: np.ndarray | torch.Tensor, model_logger: logging):
    from base64 import b64encode
    from hashlib import sha256

    model_logger.debug(f"embedding_key {embedding_key} is None? {embedding_key is None}.")
    if embedding_key is None:
        img2hash = arr
        if isinstance(arr, torch.Tensor):
            model_logger.debug("images variable is a Tensor, start converting back to numpy")
            img2hash = arr.numpy(force=True)
            model_logger.debug("done Tensor converted back to numpy")
        model_logger.debug("start image hashing")
        img2hash_fn = sha256(img2hash)
        embedding_key = b64encode(img2hash_fn.digest())
        embedding_key = embedding_key.decode("utf-8")
        model_logger.debug(f"done image hashing, now embedding_key is {embedding_key}.")
    return embedding_key


if __name__ == '__main__':
    parsed_args = parse_args([])
    print("arrrrg:", parsed_args)