alessandro trinca tornidor
feat: use everywhere a single app_logger instance defined in samgis_lisa_on_zero.__init__
bb6e1c0
import os | |
from lisa_on_cuda.utils import session_logger | |
from numpy import ndarray | |
from samgis_core.utilities.type_hints import TupleFloat | |
from xyzservices import TileProvider | |
from samgis_lisa_on_zero import app_logger | |
from samgis_lisa_on_zero.utilities.constants import (OUTPUT_CRS_STRING, DRIVER_RASTERIO_GTIFF, N_MAX_RETRIES, | |
N_CONNECTION, N_WAIT, | |
ZOOM_AUTO, BOOL_USE_CACHE) | |
from samgis_lisa_on_zero.utilities.type_hints import tuple_ndarray_transform | |
bool_use_cache = int(os.getenv("BOOL_USE_CACHE", BOOL_USE_CACHE)) | |
n_connection = int(os.getenv("N_CONNECTION", N_CONNECTION)) | |
n_max_retries = int(os.getenv("N_MAX_RETRIES", N_MAX_RETRIES)) | |
n_wait = int(os.getenv("N_WAIT", N_WAIT)) | |
zoom_auto_string = os.getenv("ZOOM_AUTO", ZOOM_AUTO) | |
def download_extent(w: float, s: float, e: float, n: float, zoom: int or str = zoom_auto_string, | |
source: TileProvider or str = None, | |
wait: int = n_wait, max_retries: int = n_max_retries, n_connections: int = n_connection, | |
use_cache: bool = bool_use_cache) -> tuple_ndarray_transform: | |
""" | |
Download, merge and crop a list of tiles into a single geo-referenced image or a raster geodata | |
Args: | |
w: West edge | |
s: South edge | |
e: East edge | |
n: North edge | |
zoom: Level of detail | |
source: The tile source: web tile provider or path to local file. The web tile provider can be in the form of | |
a :class:`xyzservices.TileProvider` object or a URL. The placeholders for the XYZ in the URL need to be | |
`{x}`, `{y}`, `{z}`, respectively. For local file paths, the file is read with `rasterio` and all bands are | |
loaded into the basemap. IMPORTANT: tiles are assumed to be in the Spherical Mercator projection | |
(EPSG:3857), unless the `crs` keyword is specified. | |
wait: if the tile API is rate-limited, the number of seconds to wait | |
between a failed request and the next try | |
max_retries: total number of rejected requests allowed before contextily will stop trying to fetch more tiles | |
from a rate-limited API. | |
n_connections: Number of connections for downloading tiles in parallel. Be careful not to overload the tile | |
server and to check the tile provider's terms of use before increasing this value. E.g., OpenStreetMap has | |
a max. value of 2 (https://operations.osmfoundation.org/policies/tiles/). If allowed to download in | |
parallel, a recommended value for n_connections is 16, and should never be larger than 64. | |
use_cache: If False, caching of the downloaded tiles will be disabled. This can be useful in resource | |
constrained environments, especially when using n_connections > 1, or when a tile provider's terms of use | |
don't allow caching. | |
Returns: | |
parsed request input | |
""" | |
try: | |
from samgis_lisa_on_zero import contextily_tile | |
from samgis_lisa_on_zero.io_package.coordinates_pixel_conversion import _from4326_to3857 | |
app_logger.info(f"connection number:{n_connections}, type:{type(n_connections)}.") | |
app_logger.info(f"zoom:{zoom}, type:{type(zoom)}.") | |
app_logger.debug(f"download raster from source:{source} with bounding box w:{w}, s:{s}, e:{e}, n:{n}.") | |
app_logger.debug(f"types w:{type(w)}, s:{type(s)}, e:{type(e)}, n:{type(n)}.") | |
downloaded_raster, bbox_raster = contextily_tile.bounds2img( | |
w, s, e, n, zoom=zoom, source=source, ll=True, wait=wait, max_retries=max_retries, | |
n_connections=n_connections, use_cache=use_cache) | |
xp0, yp0 = _from4326_to3857(n, e) | |
xp1, yp1 = _from4326_to3857(s, w) | |
cropped_image_ndarray, cropped_transform = crop_raster(yp1, xp1, yp0, xp0, downloaded_raster, bbox_raster) | |
return cropped_image_ndarray, cropped_transform | |
except Exception as e_download_extent: | |
app_logger.exception(f"e_download_extent:{e_download_extent}.", exc_info=True) | |
raise e_download_extent | |
def crop_raster(w: float, s: float, e: float, n: float, raster: ndarray, raster_bbox: TupleFloat, | |
crs: str = OUTPUT_CRS_STRING, driver: str = DRIVER_RASTERIO_GTIFF) -> tuple_ndarray_transform: | |
""" | |
Crop a raster using given bounding box (w, s, e, n) values | |
Args: | |
w: cropping west edge | |
s: cropping south edge | |
e: cropping east edge | |
n: cropping north edge | |
raster: raster image to crop | |
raster_bbox: bounding box of raster to crop | |
crs: The coordinate reference system. Required in 'w' or 'w+' modes, it is ignored in 'r' or 'r+' modes. | |
driver: A short format driver name (e.g. "GTiff" or "JPEG") or a list of such names (see GDAL docs at | |
https://gdal.org/drivers/raster/index.html ). In 'w' or 'w+' modes a single name is required. In 'r' or 'r+' | |
modes the driver can usually be omitted. Registered drivers will be tried sequentially until a match is | |
found. When multiple drivers are available for a format such as JPEG2000, one of them can be selected by | |
using this keyword argument. | |
Returns: | |
cropped raster with its Affine transform | |
""" | |
try: | |
from rasterio.io import MemoryFile | |
from rasterio.mask import mask as rio_mask | |
from shapely.geometry import Polygon | |
from geopandas import GeoSeries | |
app_logger.debug(f"raster: type {type(raster)}, raster_ext:{type(raster_bbox)}, {raster_bbox}.") | |
img_to_save, transform = get_transform_raster(raster, raster_bbox) | |
img_height, img_width, number_bands = img_to_save.shape | |
# https://rasterio.readthedocs.io/en/latest/topics/memory-files.html | |
with MemoryFile() as rio_mem_file: | |
app_logger.debug("writing raster in-memory to crop it with rasterio.mask.mask()") | |
with rio_mem_file.open( | |
driver=driver, | |
height=img_height, | |
width=img_width, | |
count=number_bands, | |
dtype=str(img_to_save.dtype.name), | |
crs=crs, | |
transform=transform, | |
) as src_raster_rw: | |
for band in range(number_bands): | |
src_raster_rw.write(img_to_save[:, :, band], band + 1) | |
app_logger.debug("cropping raster in-memory with rasterio.mask.mask()") | |
with rio_mem_file.open() as src_raster_ro: | |
shapes_crop_polygon = Polygon([(n, e), (s, e), (s, w), (n, w), (n, e)]) | |
shapes_crop = GeoSeries([shapes_crop_polygon]) | |
app_logger.debug(f"cropping with polygon::{shapes_crop_polygon}.") | |
cropped_image, cropped_transform = rio_mask(src_raster_ro, shapes=shapes_crop, crop=True) | |
cropped_image_ndarray = reshape_as_image(cropped_image) | |
app_logger.info(f"cropped image::{cropped_image_ndarray.shape}.") | |
return cropped_image_ndarray, cropped_transform | |
except Exception as e_crop_raster: | |
try: | |
app_logger.error(f"raster type:{type(raster)}.") | |
app_logger.error(f"raster shape:{raster.shape}, dtype:{raster.dtype}.") | |
except Exception as e_shape_dtype: | |
app_logger.exception(f"raster shape or dtype not found:{e_shape_dtype}.", exc_info=True) | |
app_logger.exception(f"e_crop_raster:{e_crop_raster}.", exc_info=True) | |
raise e_crop_raster | |
def get_transform_raster(raster: ndarray, raster_bbox: TupleFloat) -> tuple_ndarray_transform: | |
""" | |
Convert the input raster image to RGB and extract the Affine | |
Args: | |
raster: raster image to geo-reference | |
raster_bbox: bounding box of raster to crop | |
Returns: | |
rgb raster image and its Affine transform | |
""" | |
try: | |
from rasterio.transform import from_origin | |
from numpy import array as np_array, linspace as np_linspace, uint8 as np_uint8 | |
from PIL.Image import fromarray | |
app_logger.debug(f"raster: type {type(raster)}, raster_ext:{type(raster_bbox)}, {raster_bbox}.") | |
rgb = fromarray(np_uint8(raster)).convert('RGB') | |
np_rgb = np_array(rgb) | |
img_height, img_width, _ = np_rgb.shape | |
min_x, max_x, min_y, max_y = raster_bbox | |
app_logger.debug(f"raster rgb shape:{np_rgb.shape}, raster rgb bbox {raster_bbox}.") | |
x = np_linspace(min_x, max_x, img_width) | |
y = np_linspace(min_y, max_y, img_height) | |
res_x = (x[-1] - x[0]) / img_width | |
res_y = (y[-1] - y[0]) / img_height | |
transform = from_origin(x[0] - res_x / 2, y[-1] + res_y / 2, res_x, res_y) | |
return np_rgb, transform | |
except Exception as e_get_transform_raster: | |
app_logger.error(f"arguments raster: {type(raster)}, {raster}.") | |
app_logger.error(f"arguments raster_bbox: {type(raster_bbox)}, {raster_bbox}.") | |
app_logger.exception(f"e_get_transform_raster:{e_get_transform_raster}.", exc_info=True) | |
raise e_get_transform_raster | |
def reshape_as_image(arr): | |
try: | |
from numpy import swapaxes | |
return swapaxes(swapaxes(arr, 0, 2), 0, 1) | |
except Exception as e_reshape_as_image: | |
app_logger.error(f"arguments: {type(arr)}, {arr}.") | |
app_logger.exception(f"e_reshape_as_image:{e_reshape_as_image}.", exc_info=True) | |
raise e_reshape_as_image | |