|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from lisa_on_cuda.utils.utils import IGNORE_INDEX, IMAGE_TOKEN_INDEX |
|
|
|
from .multimodal_encoder.builder import build_vision_tower |
|
|
|
|
|
class LlavaMetaModel: |
|
def __init__(self, config): |
|
super(LlavaMetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
self.vision_tower = build_vision_tower(config, delay_load=True) |
|
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size) |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, "vision_tower", None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def initialize_vision_modules(self, model_args, fsdp=None): |
|
vision_tower = model_args.vision_tower |
|
mm_vision_select_layer = model_args.mm_vision_select_layer |
|
mm_vision_select_feature = model_args.mm_vision_select_feature |
|
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter |
|
|
|
self.config.mm_vision_tower = vision_tower |
|
|
|
vision_tower = build_vision_tower(model_args) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower = [vision_tower] |
|
else: |
|
self.vision_tower = vision_tower |
|
|
|
self.config.use_mm_proj = True |
|
self.config.mm_hidden_size = vision_tower.hidden_size |
|
self.config.mm_vision_select_layer = mm_vision_select_layer |
|
self.config.mm_vision_select_feature = mm_vision_select_feature |
|
|
|
if not hasattr(self, "mm_projector"): |
|
self.mm_projector = nn.Linear( |
|
self.config.mm_hidden_size, self.config.hidden_size |
|
) |
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
mm_projector_weights = torch.load( |
|
pretrain_mm_mlp_adapter, map_location="cpu" |
|
) |
|
|
|
def get_w(weights, keyword): |
|
return { |
|
k.split(keyword + ".")[1]: v |
|
for k, v in weights.items() |
|
if keyword in k |
|
} |
|
|
|
self.mm_projector.load_state_dict( |
|
get_w(mm_projector_weights, "mm_projector") |
|
) |
|
|
|
|
|
class LlavaMetaForCausalLM(ABC): |
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def encode_images(self, images): |
|
image_features = self.get_model().get_vision_tower()(images) |
|
image_features = self.get_model().mm_projector(image_features) |
|
return image_features |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, attention_mask, past_key_values, labels, images |
|
): |
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
if ( |
|
past_key_values is not None |
|
and vision_tower is not None |
|
and images is not None |
|
and input_ids.shape[1] == 1 |
|
): |
|
attention_mask = torch.ones( |
|
(attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device, |
|
) |
|
return input_ids, attention_mask, past_key_values, None, labels |
|
|
|
if type(images) is list or images.ndim == 5: |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
image_features = self.encode_images(concat_images) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
image_features = [x.flatten(0, 1) for x in image_features] |
|
else: |
|
image_features = self.encode_images(images) |
|
|
|
new_input_embeds = [] |
|
new_labels = [] if labels is not None else None |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: |
|
|
|
cur_input_embeds = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = ( |
|
cur_input_embeds |
|
+ ( |
|
0.0 * self.get_model().mm_projector(vision_tower.dummy_feature) |
|
).sum() |
|
) |
|
new_input_embeds.append(cur_input_embeds) |
|
if labels is not None: |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
cur_new_input_embeds = [] |
|
if labels is not None: |
|
cur_labels = labels[batch_idx] |
|
cur_new_labels = [] |
|
assert cur_labels.shape == cur_input_ids.shape |
|
while image_token_indices.numel() > 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
image_token_start = image_token_indices[0] |
|
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( |
|
self.config, "mm_use_im_start_end", False |
|
): |
|
cur_new_input_embeds.append( |
|
self.get_model() |
|
.embed_tokens(cur_input_ids[: image_token_start - 1]) |
|
.detach() |
|
) |
|
cur_new_input_embeds.append( |
|
self.get_model().embed_tokens( |
|
cur_input_ids[image_token_start - 1 : image_token_start] |
|
) |
|
) |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_input_embeds.append( |
|
self.get_model().embed_tokens( |
|
cur_input_ids[image_token_start + 1 : image_token_start + 2] |
|
) |
|
) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append( |
|
torch.full( |
|
(cur_image_features.shape[0],), |
|
IGNORE_INDEX, |
|
device=labels.device, |
|
dtype=labels.dtype, |
|
) |
|
) |
|
cur_new_labels.append( |
|
cur_labels[image_token_start : image_token_start + 1] |
|
) |
|
cur_labels = cur_labels[image_token_start + 2 :] |
|
elif getattr(self.config, "mm_use_im_start_end", False): |
|
cur_new_input_embeds.append( |
|
self.get_model().embed_tokens(cur_input_ids[:image_token_start]) |
|
) |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_input_embeds.append( |
|
self.get_model().embed_tokens( |
|
cur_input_ids[image_token_start + 1 : image_token_start + 2] |
|
) |
|
) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append( |
|
torch.full( |
|
(cur_image_features.shape[0],), |
|
IGNORE_INDEX, |
|
device=labels.device, |
|
dtype=labels.dtype, |
|
) |
|
) |
|
cur_new_labels.append( |
|
cur_labels[image_token_start + 1 : image_token_start + 2] |
|
) |
|
cur_labels = cur_labels[image_token_start + 2 :] |
|
else: |
|
cur_new_input_embeds.append( |
|
self.get_model().embed_tokens(cur_input_ids[:image_token_start]) |
|
) |
|
cur_new_input_embeds.append(cur_image_features) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append( |
|
torch.full( |
|
(cur_image_features.shape[0],), |
|
IGNORE_INDEX, |
|
device=labels.device, |
|
dtype=labels.dtype, |
|
) |
|
) |
|
cur_labels = cur_labels[image_token_start + 1 :] |
|
cur_image_idx += 1 |
|
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( |
|
self.config, "mm_use_im_start_end", False |
|
): |
|
cur_input_ids = cur_input_ids[image_token_start + 2 :] |
|
elif getattr(self.config, "mm_use_im_start_end", False): |
|
cur_input_ids = cur_input_ids[image_token_start + 2 :] |
|
else: |
|
cur_input_ids = cur_input_ids[image_token_start + 1 :] |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
if cur_input_ids.numel() > 0: |
|
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( |
|
self.config, "mm_use_im_start_end", False |
|
): |
|
cur_new_input_embeds.append( |
|
self.get_model().embed_tokens(cur_input_ids).detach() |
|
) |
|
elif getattr(self.config, "mm_use_im_start_end", False): |
|
cur_new_input_embeds.append( |
|
self.get_model().embed_tokens(cur_input_ids) |
|
) |
|
else: |
|
cur_new_input_embeds.append( |
|
self.get_model().embed_tokens(cur_input_ids) |
|
) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels) |
|
cur_new_input_embeds = [ |
|
x.to(device=self.device) for x in cur_new_input_embeds |
|
] |
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) |
|
new_input_embeds.append(cur_new_input_embeds) |
|
if labels is not None: |
|
cur_new_labels = torch.cat(cur_new_labels, dim=0) |
|
new_labels.append(cur_new_labels) |
|
|
|
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): |
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
|
|
new_input_embeds_align = [] |
|
for cur_new_embed in new_input_embeds: |
|
cur_new_embed = torch.cat( |
|
( |
|
cur_new_embed, |
|
torch.zeros( |
|
(max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), |
|
dtype=cur_new_embed.dtype, |
|
device=cur_new_embed.device, |
|
), |
|
), |
|
dim=0, |
|
) |
|
new_input_embeds_align.append(cur_new_embed) |
|
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) |
|
|
|
if labels is not None: |
|
new_labels_align = [] |
|
_new_labels = new_labels |
|
for cur_new_label in new_labels: |
|
cur_new_label = torch.cat( |
|
( |
|
cur_new_label, |
|
torch.full( |
|
(max_len - cur_new_label.shape[0],), |
|
IGNORE_INDEX, |
|
dtype=cur_new_label.dtype, |
|
device=cur_new_label.device, |
|
), |
|
), |
|
dim=0, |
|
) |
|
new_labels_align.append(cur_new_label) |
|
new_labels = torch.stack(new_labels_align, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attention_mask = [] |
|
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip( |
|
attention_mask, _new_labels, new_labels |
|
): |
|
new_attn_mask_pad_left = torch.full( |
|
(cur_new_labels.shape[0] - labels.shape[1],), |
|
True, |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device, |
|
) |
|
new_attn_mask_pad_right = torch.full( |
|
(cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), |
|
False, |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device, |
|
) |
|
cur_new_attention_mask = torch.cat( |
|
( |
|
new_attn_mask_pad_left, |
|
cur_attention_mask, |
|
new_attn_mask_pad_right, |
|
), |
|
dim=0, |
|
) |
|
new_attention_mask.append(cur_new_attention_mask) |
|
attention_mask = torch.stack(new_attention_mask, dim=0) |
|
assert attention_mask.shape == new_labels.shape |
|
else: |
|
new_input_embeds = torch.stack(new_input_embeds, dim=0) |
|
if labels is not None: |
|
new_labels = torch.stack(new_labels, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attn_mask_pad_left = torch.full( |
|
( |
|
attention_mask.shape[0], |
|
new_input_embeds.shape[1] - input_ids.shape[1], |
|
), |
|
True, |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device, |
|
) |
|
attention_mask = torch.cat( |
|
(new_attn_mask_pad_left, attention_mask), dim=1 |
|
) |
|
assert attention_mask.shape == new_input_embeds.shape[:2] |
|
|
|
return None, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
|
|
def initialize_vision_tokenizer(self, model_args, num_new_tokens): |
|
|
|
|
|
|
|
|
|
if model_args.mm_use_im_start_end: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
if model_args.pretrain_mm_mlp_adapter: |
|
mm_projector_weights = torch.load( |
|
model_args.pretrain_mm_mlp_adapter, map_location="cpu" |
|
) |
|
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"] |
|
assert num_new_tokens == 2 |
|
if input_embeddings.shape == embed_tokens_weight.shape: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight[ |
|
-num_new_tokens: |
|
] |
|
elif embed_tokens_weight.shape[0] == num_new_tokens: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight |
|
else: |
|
raise ValueError( |
|
f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}." |
|
) |
|
elif model_args.mm_use_im_patch_token: |
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = False |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|