aletrn's picture
Upload 4 files (#1)
fbac074 verified
raw
history blame
11 kB
import spaces
import json
import os
from pathlib import Path
from typing import Callable, NoReturn
from asgi_correlation_id import CorrelationIdMiddleware
import gradio as gr
from starlette.responses import JSONResponse
import structlog
import uvicorn
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, Request, status
from fastapi.exceptions import RequestValidationError
from fastapi.responses import FileResponse, HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from pydantic import ValidationError
from samgis_core.utilities import create_folders_if_not_exists
from samgis_core.utilities import frontend_builder
from samgis_core.utilities.session_logger import setup_logging
from samgis_web.utilities.constants import GRADIO_EXAMPLES_TEXT_LIST, GRADIO_MARKDOWN, GRADIO_EXAMPLE_BODY_STRING_PROMPT
from samgis_web.utilities.type_hints import StringPromptApiRequestBody
load_dotenv()
project_root_folder = Path(globals().get("__file__", "./_")).absolute().parent
workdir = Path(os.getenv("WORKDIR", project_root_folder))
model_folder = Path(project_root_folder / "machine_learning_models")
log_level = os.getenv("LOG_LEVEL", "INFO")
setup_logging(log_level=log_level)
app_logger = structlog.stdlib.get_logger()
app_logger.info(f"PROJECT_ROOT_FOLDER:{project_root_folder}, WORKDIR:{workdir}.")
folders_map = os.getenv("FOLDERS_MAP", "{}")
markdown_text = os.getenv("MARKDOWN_TEXT", "")
examples_text_list = os.getenv("EXAMPLES_TEXT_LIST", "").split("\n")
example_body = json.loads(os.getenv("EXAMPLE_BODY", "{}"))
mount_gradio_app = bool(os.getenv("MOUNT_GRADIO_APP", ""))
static_dist_folder = workdir / "static" / "dist"
input_css_path = os.getenv("INPUT_CSS_PATH", "src/input.css")
vite_gradio_url = os.getenv("VITE_GRADIO_URL", "/gradio")
vite_index_url = os.getenv("VITE_INDEX_URL", "/")
vite_samgis_url = os.getenv("VITE_SAMGIS_URL", "/samgis")
vite_lisa_url = os.getenv("VITE_LISA_URL", "/lisa")
fastapi_title = "samgis-lisa-on-zero"
app = FastAPI(title=fastapi_title, version="1.0")
@app.middleware("http")
async def request_middleware(request, call_next):
from samgis_web.web.middlewares import logging_middleware
return await logging_middleware(request, call_next)
@spaces.GPU
def gpu_initialization() -> None:
app_logger.info("GPU initialization...")
def get_example_complete(example_text):
example_dict = dict(**GRADIO_EXAMPLE_BODY_STRING_PROMPT)
example_dict["string_prompt"] = example_text
return json.dumps(example_dict)
def get_gradio_interface_geojson(fn_inference: Callable):
with gr.Blocks() as gradio_app:
gr.Markdown(GRADIO_MARKDOWN)
with gr.Row():
with gr.Column():
text_input = gr.Textbox(lines=1, placeholder=None, label="Payload input")
btn = gr.Button(value="Submit")
with gr.Column():
text_output = gr.Textbox(lines=1, placeholder=None, label="Geojson Output")
gr.Examples(
examples=[
get_example_complete(example) for example in GRADIO_EXAMPLES_TEXT_LIST
],
inputs=[text_input],
)
btn.click(
fn_inference,
inputs=[text_input],
outputs=[text_output]
)
return gradio_app
def handle_exception_response(exception: Exception) -> NoReturn:
import subprocess
project_root_folder_content = subprocess.run(
f"ls -l {project_root_folder}/", shell=True, universal_newlines=True, stdout=subprocess.PIPE
)
app_logger.error(f"project_root folder 'ls -l' command output: {project_root_folder_content.stdout}.")
workdir_folder_content = subprocess.run(
f"ls -l {workdir}/", shell=True, universal_newlines=True, stdout=subprocess.PIPE
)
app_logger.error(f"workdir folder 'ls -l' command stdout: {workdir_folder_content.stdout}.")
app_logger.error(f"workdir folder 'ls -l' command stderr: {workdir_folder_content.stderr}.")
app_logger.error(f"inference error:{exception}.")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Internal server error on inference"
)
@app.get("/health")
async def health() -> JSONResponse:
from samgis_web.__version__ import __version__ as version_web
from samgis_core.__version__ import __version__ as version_core
from lisa_on_cuda.__version__ import __version__ as version_lisa_on_cuda
from samgis_lisa.__version__ import __version__ as version_samgis_lisa
app_logger.info(f"still alive, version_web:{version_web}, version_core:{version_core}.")
app_logger.info(f"still alive, version_lisa_on_cuda:{version_lisa_on_cuda}, version_samgis_lisa:{version_samgis_lisa}.")
return JSONResponse(status_code=200, content={"msg": "still alive..."})
def infer_lisa_gradio(request_input: StringPromptApiRequestBody) -> str:
from samgis_lisa.io_package.wrappers_helpers import get_parsed_bbox_points_with_string_prompt
from samgis_lisa.prediction_api import lisa
from samgis_lisa.utilities.constants import LISA_INFERENCE_FN
app_logger.info("starting lisa inference request...")
try:
import time
time_start_run = time.time()
body_request = get_parsed_bbox_points_with_string_prompt(request_input)
app_logger.info(f"lisa body_request:{body_request}.")
try:
source = body_request["source"]
source_name = body_request["source_name"]
app_logger.debug(f"body_request:type(source):{type(source)}, source:{source}.")
app_logger.debug(f"body_request:type(source_name):{type(source_name)}, source_name:{source_name}.")
app_logger.debug(f"lisa module:{lisa}.")
gpu_initialization()
output = lisa.lisa_predict(
bbox=body_request["bbox"], prompt=body_request["prompt"], zoom=body_request["zoom"],
source=source, source_name=source_name, inference_function_name_key=LISA_INFERENCE_FN,
inference_decorator=spaces.GPU
)
duration_run = time.time() - time_start_run
app_logger.info(f"duration_run:{duration_run}.")
body = {
"duration_run": duration_run,
"output": output
}
dumped = json.dumps(body)
app_logger.info(f"json.dumps(body) type:{type(dumped)}, len:{len(dumped)}.")
app_logger.debug(f"complete json.dumps(body):{dumped}.")
return dumped
except Exception as inference_exception:
app_logger.error(f"inference_exception:{inference_exception}.")
app_logger.error(f"inference_exception, request_input:{request_input}.")
raise HTTPException(status_code=500, detail="Internal Server Error")
except ValidationError as va1:
app_logger.error(f"validation error: {str(va1)}.")
app_logger.error(f"ValidationError, request_input:{request_input}.")
raise RequestValidationError("Unprocessable Entity")
@app.post("/infer_lisa")
def infer_lisa(request_input: StringPromptApiRequestBody) -> JSONResponse:
dumped = infer_lisa_gradio(request_input=request_input)
app_logger.info(f"json.dumps(body) type:{type(dumped)}, len:{len(dumped)}.")
app_logger.debug(f"complete json.dumps(body):{dumped}.")
return JSONResponse(status_code=200, content={"body": dumped})
@app.exception_handler(RequestValidationError)
def request_validation_exception_handler(request: Request, exc: RequestValidationError) -> JSONResponse:
from samgis_web.web import exception_handlers
return exception_handlers.request_validation_exception_handler(request, exc)
@app.exception_handler(HTTPException)
def http_exception_handler(request: Request, exc: HTTPException) -> JSONResponse:
from samgis_web.web import exception_handlers
return exception_handlers.http_exception_handler(request, exc)
create_folders_if_not_exists.folders_creation(folders_map)
write_tmp_on_disk = os.getenv("WRITE_TMP_ON_DISK", "")
app_logger.info(f"write_tmp_on_disk:{write_tmp_on_disk}.")
if bool(write_tmp_on_disk):
try:
assert Path(write_tmp_on_disk).is_dir()
app.mount("/vis_output", StaticFiles(directory=write_tmp_on_disk), name="vis_output")
templates = Jinja2Templates(directory=str(project_root_folder / "static"))
@app.get("/vis_output", response_class=HTMLResponse)
def list_files(request: Request):
files = os.listdir(write_tmp_on_disk)
files_paths = sorted([f"{request.url._url}/{f}" for f in files])
print(files_paths)
return templates.TemplateResponse(
"list_files.html", {"request": request, "files": files_paths}
)
except (AssertionError, RuntimeError) as rerr:
app_logger.error(f"{rerr} while loading the folder write_tmp_on_disk:{write_tmp_on_disk}...")
raise rerr
frontend_builder.build_frontend(
project_root_folder=workdir,
input_css_path=input_css_path,
output_dist_folder=static_dist_folder
)
app_logger.info("build_frontend ok!")
templates = Jinja2Templates(directory="templates")
app.mount("/static", StaticFiles(directory=static_dist_folder, html=True), name="static")
# important: the index() function and the app.mount MUST be at the end
# samgis.html
app.mount(vite_samgis_url, StaticFiles(directory=static_dist_folder, html=True), name="samgis")
@app.get(vite_samgis_url)
async def samgis() -> FileResponse:
return FileResponse(path=str(static_dist_folder / "samgis.html"), media_type="text/html")
# lisa.html
app.mount(vite_lisa_url, StaticFiles(directory=static_dist_folder, html=True), name="lisa")
@app.get(vite_lisa_url)
async def lisa() -> FileResponse:
return FileResponse(path=str(static_dist_folder / "lisa.html"), media_type="text/html")
# index.html (lisa.html copy)
app.mount(vite_index_url, StaticFiles(directory=static_dist_folder, html=True), name="index")
@app.get(vite_index_url)
async def index() -> FileResponse:
return FileResponse(path=str(static_dist_folder / "index.html"), media_type="text/html")
app_logger.info(f"creating gradio interface...")
gr_interface = get_gradio_interface_geojson(infer_lisa_gradio)
app_logger.info(f"gradio interface created, mounting gradio app on url {vite_gradio_url} within FastAPI...")
app = gr.mount_gradio_app(app, gr_interface, path=vite_gradio_url)
app_logger.info("mounted gradio app within fastapi")
# add the CorrelationIdMiddleware AFTER the @app.middleware("http") decorated function to avoid missing request id
app.add_middleware(CorrelationIdMiddleware)
if __name__ == '__main__':
try:
uvicorn.run(host="0.0.0.0", port=7860, app=app)
except Exception as ex:
app_logger.error(f"fastapi/gradio application {fastapi_title}, exception:{ex}.")
print(f"fastapi/gradio application {fastapi_title}, exception:{ex}.")
raise ex