|
import argparse |
|
import logging |
|
import os |
|
import re |
|
from typing import Callable |
|
|
|
import cv2 |
|
import gradio as gr |
|
import nh3 |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor |
|
|
|
from lisa_on_cuda import app_logger |
|
from lisa_on_cuda.LISA import LISAForCausalLM |
|
from lisa_on_cuda.llava import conversation as conversation_lib |
|
from lisa_on_cuda.llava.mm_utils import tokenizer_image_token |
|
from lisa_on_cuda.segment_anything.utils.transforms import ResizeLongestSide |
|
from . import constants, utils |
|
|
|
placeholders = utils.create_placeholder_variables() |
|
|
|
|
|
def get_device_map_kwargs(device_map="auto", device="cuda"): |
|
kwargs = {"device_map": device_map} |
|
if device != "cuda": |
|
kwargs['device_map'] = {"": device} |
|
return kwargs |
|
|
|
|
|
def parse_args(args_to_parse, internal_logger=None): |
|
if internal_logger is None: |
|
internal_logger = app_logger |
|
internal_logger.info(f"ROOT_PROJECT:{utils.PROJECT_ROOT_FOLDER}, default vis_output:{utils.VIS_OUTPUT}.") |
|
parser = argparse.ArgumentParser(description="LISA chat") |
|
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1-explanatory") |
|
parser.add_argument("--vis_save_path", default=str(utils.VIS_OUTPUT), type=str) |
|
parser.add_argument( |
|
"--precision", |
|
default="fp16", |
|
type=str, |
|
choices=["fp32", "bf16", "fp16"], |
|
help="precision for inference", |
|
) |
|
parser.add_argument("--image_size", default=1024, type=int, help="image size") |
|
parser.add_argument("--model_max_length", default=512, type=int) |
|
parser.add_argument("--lora_r", default=8, type=int) |
|
parser.add_argument( |
|
"--vision-tower", default="openai/clip-vit-large-patch14", type=str |
|
) |
|
parser.add_argument("--local-rank", default=0, type=int, help="node rank") |
|
parser.add_argument("--load_in_8bit", action="store_true", default=False) |
|
parser.add_argument("--load_in_4bit", action="store_true", default=True) |
|
parser.add_argument("--use_mm_start_end", action="store_true", default=True) |
|
parser.add_argument( |
|
"--conv_type", |
|
default="llava_v1", |
|
type=str, |
|
choices=["llava_v1", "llava_llama_2"], |
|
) |
|
return parser.parse_args(args_to_parse) |
|
|
|
|
|
def get_cleaned_input(input_str, internal_logger=None): |
|
if internal_logger is None: |
|
internal_logger = app_logger |
|
internal_logger.info(f"start cleaning of input_str: {input_str}.") |
|
input_str = nh3.clean( |
|
input_str, |
|
tags={ |
|
"a", |
|
"abbr", |
|
"acronym", |
|
"b", |
|
"blockquote", |
|
"code", |
|
"em", |
|
"i", |
|
"li", |
|
"ol", |
|
"strong", |
|
"ul", |
|
}, |
|
attributes={ |
|
"a": {"href", "title"}, |
|
"abbr": {"title"}, |
|
"acronym": {"title"}, |
|
}, |
|
url_schemes={"http", "https", "mailto"}, |
|
link_rel=None, |
|
) |
|
internal_logger.info(f"cleaned input_str: {input_str}.") |
|
return input_str |
|
|
|
|
|
def set_image_precision_by_args(input_image, precision): |
|
if precision == "bf16": |
|
input_image = input_image.bfloat16() |
|
elif precision == "fp16": |
|
input_image = input_image.half() |
|
else: |
|
input_image = input_image.float() |
|
return input_image |
|
|
|
|
|
def preprocess( |
|
x, |
|
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1), |
|
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1), |
|
img_size=1024, |
|
) -> torch.Tensor: |
|
"""Normalize pixel values and pad to a square input.""" |
|
logging.info("preprocess started") |
|
|
|
x = (x - pixel_mean) / pixel_std |
|
|
|
h, w = x.shape[-2:] |
|
padh = img_size - h |
|
padw = img_size - w |
|
x = F.pad(x, (0, padw, 0, padh)) |
|
logging.info("preprocess ended") |
|
return x |
|
|
|
|
|
def load_model_for_causal_llm_pretrained( |
|
version, torch_dtype, load_in_8bit, load_in_4bit, seg_token_idx, vision_tower, |
|
internal_logger: logging = None, device_map="auto", device="cuda" |
|
): |
|
if internal_logger is None: |
|
internal_logger = app_logger |
|
internal_logger.debug(f"prepare kwargs, 4bit:{load_in_4bit}, 8bit:{load_in_8bit}.") |
|
kwargs_device_map = get_device_map_kwargs(device_map=device_map, device=device) |
|
kwargs = {"torch_dtype": torch_dtype, **kwargs_device_map} |
|
if load_in_4bit: |
|
kwargs.update( |
|
{ |
|
"torch_dtype": torch.half, |
|
|
|
"quantization_config": BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
llm_int8_skip_modules=["visual_model"], |
|
), |
|
} |
|
) |
|
elif load_in_8bit: |
|
kwargs.update( |
|
{ |
|
"torch_dtype": torch.half, |
|
"quantization_config": BitsAndBytesConfig( |
|
llm_int8_skip_modules=["visual_model"], |
|
load_in_8bit=True, |
|
), |
|
} |
|
) |
|
internal_logger.debug(f"start loading model:{version}.") |
|
_model = LISAForCausalLM.from_pretrained( |
|
version, |
|
low_cpu_mem_usage=True, |
|
vision_tower=vision_tower, |
|
seg_token_idx=seg_token_idx, |
|
|
|
**kwargs |
|
) |
|
internal_logger.debug("model loaded!") |
|
return _model |
|
|
|
|
|
def get_model(args_to_parse, internal_logger: logging = None, inference_decorator: Callable = None, device_map="auto", device="cpu", device2="cuda"): |
|
"""Load model and inference function with arguments. Compatible with ZeroGPU (spaces 0.30.2) |
|
|
|
Args: |
|
args_to_parse: default input arguments |
|
internal_logger: logger |
|
inference_decorator: inference decorator (now it's supported and tested ZeroGPU spaces.GPU decorator) |
|
device_map: device type needed for ZeroGPU cuda hw |
|
device: device type needed for ZeroGPU cuda hw |
|
device2: device type needed for ZeroGPU cuda hw, default to cpu to avoid bug on loading model |
|
|
|
Returns: |
|
inference function with LISA model |
|
""" |
|
if internal_logger is None: |
|
internal_logger = app_logger |
|
internal_logger.info(f"starting model preparation, folder creation for path: {args_to_parse.vis_save_path}.") |
|
try: |
|
vis_save_path_exists = os.path.isdir(args_to_parse.vis_save_path) |
|
logging.info(f"vis_save_path_exists:{vis_save_path_exists}.") |
|
os.makedirs(args_to_parse.vis_save_path, exist_ok=True) |
|
except PermissionError as pex: |
|
internal_logger.info(f"PermissionError: {pex}, folder:{args_to_parse.vis_save_path}.") |
|
|
|
|
|
|
|
internal_logger.info(f"creating tokenizer: {args_to_parse.version}, max_length:{args_to_parse.model_max_length}.") |
|
_tokenizer = AutoTokenizer.from_pretrained( |
|
args_to_parse.version, |
|
cache_dir=None, |
|
model_max_length=args_to_parse.model_max_length, |
|
padding_side="right", |
|
use_fast=False, |
|
) |
|
_tokenizer.pad_token = _tokenizer.unk_token |
|
internal_logger.info("tokenizer ok") |
|
args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0] |
|
torch_dtype = torch.float32 |
|
if args_to_parse.precision == "bf16": |
|
torch_dtype = torch.bfloat16 |
|
elif args_to_parse.precision == "fp16": |
|
torch_dtype = torch.half |
|
|
|
internal_logger.debug(f"start loading causal llm:{args_to_parse.version}...") |
|
_model = inference_decorator( |
|
load_model_for_causal_llm_pretrained( |
|
args_to_parse.version, |
|
torch_dtype=torch_dtype, |
|
load_in_8bit=args_to_parse.load_in_8bit, |
|
load_in_4bit=args_to_parse.load_in_4bit, |
|
seg_token_idx=args_to_parse.seg_token_idx, |
|
vision_tower=args_to_parse.vision_tower, |
|
device_map=device_map, |
|
device=device |
|
)) if inference_decorator else load_model_for_causal_llm_pretrained( |
|
args_to_parse.version, |
|
torch_dtype=torch_dtype, |
|
load_in_8bit=args_to_parse.load_in_8bit, |
|
load_in_4bit=args_to_parse.load_in_4bit, |
|
seg_token_idx=args_to_parse.seg_token_idx, |
|
vision_tower=args_to_parse.vision_tower, |
|
device_map=device_map |
|
) |
|
internal_logger.debug("causal llm loaded!") |
|
|
|
_model.config.eos_token_id = _tokenizer.eos_token_id |
|
_model.config.bos_token_id = _tokenizer.bos_token_id |
|
_model.config.pad_token_id = _tokenizer.pad_token_id |
|
_model.get_model().initialize_vision_modules(_model.get_model().config) |
|
|
|
internal_logger.debug(f"start vision tower:{args_to_parse.vision_tower}...") |
|
_model, vision_tower = inference_decorator( |
|
prepare_model_vision_tower(_model, args_to_parse, torch_dtype) |
|
) if inference_decorator else prepare_model_vision_tower( |
|
_model, args_to_parse, torch_dtype |
|
) |
|
internal_logger.debug(f"_model type:{type(_model)}, vision_tower type:{type(vision_tower)}.") |
|
|
|
vision_tower.to(device=device2) |
|
internal_logger.debug("vision tower loaded, prepare clip image processor...") |
|
_clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower) |
|
internal_logger.debug("clip image processor done.") |
|
_transform = ResizeLongestSide(args_to_parse.image_size) |
|
internal_logger.debug("start model evaluation...") |
|
inference_decorator(_model.eval()) if inference_decorator else _model.eval() |
|
internal_logger.info("model preparation ok!") |
|
return _model, _clip_image_processor, _tokenizer, _transform |
|
|
|
|
|
def prepare_model_vision_tower(_model, args_to_parse, torch_dtype, internal_logger: logging = None): |
|
if internal_logger is None: |
|
internal_logger = app_logger |
|
internal_logger.debug(f"start vision tower preparation, torch dtype:{torch_dtype}, args_to_parse:{args_to_parse}.") |
|
vision_tower = _model.get_model().get_vision_tower() |
|
vision_tower.to(dtype=torch_dtype) |
|
if args_to_parse.precision == "bf16": |
|
internal_logger.debug(f"vision tower precision bf16? {args_to_parse.precision}, 1.") |
|
_model = _model.bfloat16().cuda() |
|
elif ( |
|
args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit) |
|
): |
|
internal_logger.debug(f"vision tower precision fp16? {args_to_parse.precision}, 2.") |
|
vision_tower = _model.get_model().get_vision_tower() |
|
_model.model.vision_tower = None |
|
import deepspeed |
|
|
|
model_engine = deepspeed.init_inference( |
|
model=_model, |
|
dtype=torch.half, |
|
replace_with_kernel_inject=True, |
|
replace_method="auto", |
|
) |
|
_model = model_engine.module |
|
_model.model.vision_tower = vision_tower.half().cuda() |
|
elif args_to_parse.precision == "fp32": |
|
internal_logger.debug(f"vision tower precision fp32? {args_to_parse.precision}, 3.") |
|
_model = _model.float().cuda() |
|
vision_tower = _model.get_model().get_vision_tower() |
|
internal_logger.debug("vision tower ok!") |
|
return _model, vision_tower |
|
|
|
|
|
def get_inference_model_by_args( |
|
args_to_parse, internal_logger0: logging = None, inference_decorator: Callable = None, device_map="auto", device="cuda" |
|
): |
|
"""Load model and inference function with arguments. Compatible with ZeroGPU (spaces 0.30.2) |
|
|
|
Args: |
|
args_to_parse: default input arguments |
|
internal_logger0: logger |
|
inference_decorator: inference decorator (now it's supported and tested ZeroGPU spaces.GPU decorator) |
|
device_map: device type needed for ZeroGPU cuda hw |
|
device: device type needed for ZeroGPU cuda hw |
|
|
|
Returns: |
|
inference function with LISA model |
|
""" |
|
if internal_logger0 is None: |
|
internal_logger0 = app_logger |
|
internal_logger0.info(f"args_to_parse:{args_to_parse}, creating model...") |
|
model, clip_image_processor, tokenizer, transform = get_model(args_to_parse, device_map=device_map, device=device, inference_decorator=inference_decorator) |
|
internal_logger0.info("created model, preparing inference function") |
|
no_seg_out = placeholders["no_seg_out"] |
|
|
|
def inference( |
|
input_str: str, |
|
input_image: str | np.ndarray, |
|
internal_logger: logging = None, |
|
embedding_key: str = None |
|
): |
|
if internal_logger is None: |
|
internal_logger = app_logger |
|
|
|
|
|
input_str = get_cleaned_input(input_str) |
|
internal_logger.info(f" input_str type: {type(input_str)}, input_image type: {type(input_image)}.") |
|
internal_logger.info(f"input_str: {input_str}, input_image: {type(input_image)}.") |
|
|
|
|
|
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1: |
|
output_str = f"[Error] Unprocessable Entity input: {input_str}." |
|
internal_logger.error(output_str) |
|
|
|
from fastapi import status |
|
from fastapi.responses import JSONResponse |
|
|
|
return JSONResponse( |
|
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, |
|
content={"msg": "Error - Unprocessable Entity"} |
|
) |
|
|
|
|
|
conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy() |
|
conv.messages = [] |
|
|
|
prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + input_str |
|
if args_to_parse.use_mm_start_end: |
|
replace_token = ( |
|
utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN |
|
) |
|
prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token) |
|
|
|
conv.append_message(conv.roles[0], prompt) |
|
conv.append_message(conv.roles[1], "") |
|
prompt = conv.get_prompt() |
|
|
|
internal_logger.info("read and preprocess image.") |
|
image_np = input_image |
|
if isinstance(input_image, str): |
|
image_np = cv2.imread(input_image) |
|
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) |
|
original_size_list = [image_np.shape[:2]] |
|
internal_logger.debug("start clip_image_processor.preprocess") |
|
image_clip = ( |
|
clip_image_processor.preprocess(image_np, return_tensors="pt")[ |
|
"pixel_values" |
|
][0] |
|
.unsqueeze(0) |
|
.cuda() |
|
) |
|
internal_logger.debug("done clip_image_processor.preprocess") |
|
internal_logger.info(f"image_clip type: {type(image_clip)}.") |
|
image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision) |
|
|
|
image = transform.apply_image(image_np) |
|
resize_list = [image.shape[:2]] |
|
|
|
internal_logger.debug(f"starting preprocess image: {type(image_clip)}.") |
|
image = ( |
|
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()) |
|
.unsqueeze(0) |
|
.cuda() |
|
) |
|
internal_logger.info(f"done preprocess image:{type(image)}, image_clip type: {type(image_clip)}.") |
|
image = set_image_precision_by_args(image, args_to_parse.precision) |
|
|
|
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt") |
|
input_ids = input_ids.unsqueeze(0).cuda() |
|
|
|
embedding_key = get_hash_array(embedding_key, image, internal_logger) |
|
internal_logger.info(f"start model evaluation with embedding_key {embedding_key}.") |
|
output_ids, pred_masks = model.evaluate( |
|
image_clip, |
|
image, |
|
input_ids, |
|
resize_list, |
|
original_size_list, |
|
max_new_tokens=512, |
|
tokenizer=tokenizer, |
|
model_logger=internal_logger, |
|
embedding_key=embedding_key |
|
) |
|
internal_logger.info("model evaluation done, start token decoding...") |
|
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX] |
|
|
|
text_output = tokenizer.decode(output_ids, skip_special_tokens=False) |
|
text_output = text_output.replace("\n", "").replace(" ", " ") |
|
text_output = text_output.split("ASSISTANT: ")[-1] |
|
|
|
internal_logger.info( |
|
f"token decoding ended,found n {len(pred_masks)} prediction masks, " |
|
f"text_output type: {type(text_output)}, text_output: {text_output}." |
|
) |
|
output_image = no_seg_out |
|
output_mask = no_seg_out |
|
for i, pred_mask in enumerate(pred_masks): |
|
if pred_mask.shape[0] == 0 or pred_mask.shape[1] == 0: |
|
continue |
|
pred_mask = pred_mask.detach().cpu().numpy()[0] |
|
pred_mask_bool = pred_mask > 0 |
|
output_mask = pred_mask_bool.astype(np.uint8) * 255 |
|
|
|
output_image = image_np.copy() |
|
output_image[pred_mask_bool] = ( |
|
image_np * 0.5 |
|
+ pred_mask_bool[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5 |
|
)[pred_mask_bool] |
|
|
|
output_str = f"ASSISTANT: {text_output} ..." |
|
internal_logger.info(f"output_image type: {type(output_mask)}.") |
|
return output_image, output_mask, output_str |
|
|
|
internal_logger0.info("prepared inference function.") |
|
internal_logger0.info(f"inference decorator none? {type(inference_decorator)}.") |
|
if inference_decorator: |
|
return inference_decorator(inference) |
|
|
|
return inference |
|
|
|
|
|
def get_gradio_interface( |
|
fn_inference: Callable, |
|
args: str = None |
|
): |
|
article_and_demo_parameters = constants.article |
|
if args is not None: |
|
article_and_demo_parameters = constants.demo_parameters |
|
args_dict = {arg: getattr(args, arg) for arg in vars(args)} |
|
for arg_k, arg_v in args_dict.items(): |
|
print(f"arg_k:{arg_v}, arg_v:{arg_v}.") |
|
article_and_demo_parameters += " * " + "".join(f"{arg_k}: {arg_v};\n") |
|
|
|
print(f"args_dict:{args_dict}.") |
|
print(f"description_and_demo_parameters:{article_and_demo_parameters}.") |
|
article_and_demo_parameters += "\n\n" + constants.article |
|
|
|
return gr.Interface( |
|
fn_inference, |
|
inputs=[ |
|
gr.Textbox(lines=1, placeholder=None, label="Text Instruction"), |
|
gr.Image(type="filepath", label="Input Image") |
|
], |
|
outputs=[ |
|
gr.Image(type="pil", label="segmentation Output"), |
|
gr.Image(type="pil", label="mask Output"), |
|
gr.Textbox(lines=1, placeholder=None, label="Text Output") |
|
], |
|
title=constants.title, |
|
description=constants.description, |
|
article=article_and_demo_parameters, |
|
examples=constants.examples, |
|
allow_flagging="auto" |
|
) |
|
|
|
|
|
def get_hash_array(embedding_key: str, arr: np.ndarray | torch.Tensor, model_logger: logging): |
|
from base64 import b64encode |
|
from hashlib import sha256 |
|
|
|
model_logger.debug(f"embedding_key {embedding_key} is None? {embedding_key is None}.") |
|
if embedding_key is None: |
|
img2hash = arr |
|
if isinstance(arr, torch.Tensor): |
|
model_logger.debug("images variable is a Tensor, start converting back to numpy") |
|
img2hash = arr.numpy(force=True) |
|
model_logger.debug("done Tensor converted back to numpy") |
|
model_logger.debug("start image hashing") |
|
img2hash_fn = sha256(img2hash) |
|
embedding_key = b64encode(img2hash_fn.digest()) |
|
embedding_key = embedding_key.decode("utf-8") |
|
model_logger.debug(f"done image hashing, now embedding_key is {embedding_key}.") |
|
return embedding_key |
|
|
|
|
|
if __name__ == '__main__': |
|
parsed_args = parse_args([]) |
|
print("arrrrg:", parsed_args) |
|
|