diff --git a/app.py b/app.py index 25373ced0bdb83e9804d193f54cd980c1001660d..7295a9623abee8a4c20729651f2c99df0552863d 100644 --- a/app.py +++ b/app.py @@ -120,7 +120,7 @@ async def health() -> JSONResponse: return JSONResponse(status_code=200, content={"msg": "still alive..."}) -# try executing gpu_initialization() not within infer_lisa_gradio() +# try executingx gpu_initialization() not within infer_lisa_gradio() # gpu_initialization() @spaces.GPU diff --git a/lisa_on_cuda/LISA.py b/lisa_on_cuda/LISA.py new file mode 100755 index 0000000000000000000000000000000000000000..6295508d1ea3cfaed556c23b1a7b5e8bf8edb40b --- /dev/null +++ b/lisa_on_cuda/LISA.py @@ -0,0 +1,471 @@ +from typing import List + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .llava.model.language_model.llava_llama import (LlavaLlamaForCausalLM, LlavaLlamaModel) +from .segment_anything import build_sam_vit_h + +embedding_dict = {} + + +def dice_loss( + inputs: torch.Tensor, + targets: torch.Tensor, + num_masks: float, + scale=1000, # 100000.0, + eps=1e-6, +) -> torch.Tensor: + """ + Compute the DICE loss, similar to generalized IOU for masks. + Arguments 'num_masks', 'scale', 'eps' and return value 'loss' are undocumented in original project + https://github.com/dvlab-research/LISA + About 'num_masks': it's similar to 'avg_factor' in weight_reduce_loss() from + https://github.com/open-mmlab/mmdetection/blob/e9cae2d0787cd5c2fc6165a6061f92fa09e48fb1/mmdet/models/losses/utils.py#L30 + + Args: + inputs: A float tensor of arbitrary shape. + The predictions for each example. + targets: A float tensor with the same shape as inputs. Stores the binary + classification label for each element in inputs + (0 for the negative class and 1 for the positive class). + num_masks: Average factor when computing the mean of losses (?) + scale: weight factor applied before computing mean of losses (?) + eps: Avoid dividing by zero (?) + + return: + Processed loss values. + + """ + inputs = inputs.sigmoid() + inputs = inputs.flatten(1, 2) + targets = targets.flatten(1, 2) + numerator = 2 * (inputs / scale * targets).sum(-1) + denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1) + loss = 1 - (numerator + eps) / (denominator + eps) + + loss = loss.sum() / (num_masks + 1e-8) + + return loss + + +def sigmoid_ce_loss( + inputs: torch.Tensor, + targets: torch.Tensor, + num_masks: float, +): + """ + Args: + inputs: A float tensor of arbitrary shape. + The predictions for each example. + targets: A float tensor with the same shape as inputs. Stores the binary + classification label for each element in inputs + (0 for the negative class and 1 for the positive class). + num_masks: Average factor when computing the mean of losses (?) + + Returns: + Loss tensor + """ + loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") + loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8) + return loss + + +class LisaMetaModel: + def __init__( + self, + config, + **kwargs, + ): + super(LisaMetaModel, self).__init__(config) + + self.config = config + if not hasattr(self.config, "train_mask_decoder"): + self.config.train_mask_decoder = kwargs["train_mask_decoder"] + self.config.out_dim = kwargs["out_dim"] + self.vision_pretrained = kwargs.get("vision_pretrained", None) + else: + self.vision_pretrained = kwargs.get("vision_pretrained", None) + self.initialize_lisa_modules(self.config) + + def initialize_lisa_modules(self, config): + # SAM + self.visual_model = build_sam_vit_h(self.vision_pretrained) + for param in self.visual_model.parameters(): + param.requires_grad = False + if config.train_mask_decoder: + self.visual_model.mask_decoder.train() + for param in self.visual_model.mask_decoder.parameters(): + param.requires_grad = True + + # Projection layer + in_dim = config.hidden_size + out_dim = config.out_dim + text_fc = [ + nn.Linear(in_dim, in_dim), + nn.ReLU(inplace=True), + nn.Linear(in_dim, out_dim), + nn.Dropout(0.0), + ] + self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_fc)]) + self.text_hidden_fcs.train() + for param in self.text_hidden_fcs.parameters(): + param.requires_grad = True + + +class LisaModel(LisaMetaModel, LlavaLlamaModel): + def __init__( + self, + config, + **kwargs, + ): + super(LisaModel, self).__init__(config, **kwargs) + + self.config.use_cache = False + self.config.vision_tower = self.config.mm_vision_tower + self.config.mm_vision_select_feature = "patch" + self.config.image_aspect_ratio = "square" + self.config.image_grid_pinpoints = None + self.config.tune_mm_mlp_adapter = False + self.config.freeze_mm_mlp_adapter = True + self.config.pretrain_mm_mlp_adapter = None + self.config.mm_use_im_patch_token = False + + +class LISAForCausalLM(LlavaLlamaForCausalLM): + def __init__( + self, + config, + **kwargs, + ): + if not hasattr(config, "train_mask_decoder"): + config.mm_use_im_start_end = kwargs.pop("use_mm_start_end", True) + config.mm_vision_tower = kwargs.get( + "vision_tower", "openai/clip-vit-large-patch14" + ) + self.ce_loss_weight = kwargs.pop("ce_loss_weight", None) + self.dice_loss_weight = kwargs.pop("dice_loss_weight", None) + self.bce_loss_weight = kwargs.pop("bce_loss_weight", None) + else: + config.mm_vision_tower = config.vision_tower + + self.seg_token_idx = kwargs.pop("seg_token_idx") + + super().__init__(config) + + self.model = LisaModel(config, **kwargs) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_visual_embs(self, pixel_values: torch.FloatTensor): + with torch.no_grad(): + image_embeddings_list = [] + for i in range(pixel_values.shape[0]): + torch.cuda.empty_cache() + image_embeddings = self.model.visual_model.image_encoder( + pixel_values[i].unsqueeze(0) + ) + image_embeddings_list.append(image_embeddings) + torch.cuda.empty_cache() + image_embeddings = torch.cat(image_embeddings_list, 0) + return image_embeddings + + def forward(self, **kwargs): + if "past_key_values" in kwargs: + return super().forward(**kwargs) + return self.model_forward(**kwargs) + + def model_forward( + self, + images: torch.FloatTensor, + images_clip: torch.FloatTensor, + input_ids: torch.LongTensor, + labels: torch.LongTensor, + attention_masks: torch.LongTensor, + offset: torch.LongTensor, + masks_list: List[torch.FloatTensor], + label_list: List[torch.Tensor], + resize_list: List[tuple], + inference: bool = False, + **kwargs, + ): + image_embeddings = self.get_visual_embs(images) + batch_size = image_embeddings.shape[0] + assert batch_size == len(offset) - 1 + + seg_token_mask = input_ids[:, 1:] == self.seg_token_idx + seg_token_mask = torch.cat( + [ + seg_token_mask, + torch.zeros((seg_token_mask.shape[0], 1)).bool().cuda(), + ], + dim=1, + ) + # hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front) + seg_token_mask = torch.cat( + [torch.zeros((seg_token_mask.shape[0], 255)).bool().cuda(), seg_token_mask], + dim=1, + ) + + if inference: + n_batch = 1 + length = input_ids.shape[0] + assert images_clip.shape[0] == 1 + images_clip_extend = images_clip.expand(length, -1, -1, -1).contiguous() + + output_hidden_states = [] + for i in range(n_batch): + start_i, end_i = i * length, min((i + 1) * length, input_ids.shape[0]) + output_i = super().forward( + images=images_clip_extend[: end_i - start_i], + attention_mask=attention_masks[start_i:end_i], + input_ids=input_ids[start_i:end_i], + output_hidden_states=True, + ) + output_hidden_states.append(output_i.hidden_states) + torch.cuda.empty_cache() + + output_hidden_states_list = [] + output_hidden_states_level = torch.cat(output_hidden_states, dim=0) + output_hidden_states_list.append(output_hidden_states_level) + output_hidden_states = output_hidden_states_list + output = None + + else: + images_clip_list = [] + for i in range(len(offset) - 1): + start_i, end_i = offset[i], offset[i + 1] + images_clip_i = ( + images_clip[i] + .unsqueeze(0) + .expand(end_i - start_i, -1, -1, -1) + .contiguous() + ) + images_clip_list.append(images_clip_i) + images_clip = torch.cat(images_clip_list, dim=0) + + output = super().forward( + images=images_clip, + attention_mask=attention_masks, + input_ids=input_ids, + labels=labels, + output_hidden_states=True, + ) + output_hidden_states = output.hidden_states + + hidden_states = [] + + assert len(self.model.text_hidden_fcs) == 1 + hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states[-1])) + + last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1) + pred_embeddings = last_hidden_state[seg_token_mask] + seg_token_counts = seg_token_mask.int().sum(-1) # [bs, ] + + seg_token_offset = seg_token_counts.cumsum(-1) + seg_token_offset = torch.cat( + [torch.zeros(1).long().cuda(), seg_token_offset], dim=0 + ) + + seg_token_offset = seg_token_offset[offset] + + pred_embeddings_ = [] + for i in range(len(seg_token_offset) - 1): + start_i, end_i = seg_token_offset[i], seg_token_offset[i + 1] + pred_embeddings_.append(pred_embeddings[start_i:end_i]) + pred_embeddings = pred_embeddings_ + + multimask_output = False + pred_masks = [] + for i in range(len(pred_embeddings)): + ( + sparse_embeddings, + dense_embeddings, + ) = self.model.visual_model.prompt_encoder( + points=None, + boxes=None, + masks=None, + text_embeds=pred_embeddings[i].unsqueeze(1), + ) + sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype) + low_res_masks, iou_predictions = self.model.visual_model.mask_decoder( + image_embeddings=image_embeddings[i].unsqueeze(0), + image_pe=self.model.visual_model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + ) + pred_mask = self.model.visual_model.postprocess_masks( + low_res_masks, + input_size=resize_list[i], + original_size=label_list[i].shape, + ) + pred_masks.append(pred_mask[:, 0]) + + model_output = output + gt_masks = masks_list + + if inference: + return { + "pred_masks": pred_masks, + "gt_masks": gt_masks, + } + + output = model_output.logits + + ce_loss = model_output.loss + ce_loss = ce_loss * self.ce_loss_weight + mask_bce_loss = 0 + mask_dice_loss = 0 + num_masks = 0 + for batch_idx in range(len(pred_masks)): + gt_mask = gt_masks[batch_idx] + pred_mask = pred_masks[batch_idx] + + assert ( + gt_mask.shape[0] == pred_mask.shape[0] + ), "gt_mask.shape: {}, pred_mask.shape: {}".format( + gt_mask.shape, pred_mask.shape + ) + mask_bce_loss += ( + sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0]) + * gt_mask.shape[0] + ) + mask_dice_loss += ( + dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0]) + * gt_mask.shape[0] + ) + num_masks += gt_mask.shape[0] + + mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8) + mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8) + mask_loss = mask_bce_loss + mask_dice_loss + + loss = ce_loss + mask_loss + + return { + "loss": loss, + "ce_loss": ce_loss, + "mask_bce_loss": mask_bce_loss, + "mask_dice_loss": mask_dice_loss, + "mask_loss": mask_loss, + } + + def evaluate( + self, + images_clip, + images, + input_ids, + resize_list, + original_size_list, + max_new_tokens=32, + tokenizer=None, + model_logger=None, + embedding_key=None + ): + with torch.no_grad(): + if model_logger is None: + import logging + model_logger = logging + model_logger.debug("start output generation...") + outputs = self.generate( + images=images_clip, + input_ids=input_ids, + max_new_tokens=max_new_tokens, + num_beams=1, + output_hidden_states=True, + return_dict_in_generate=True, + ) + model_logger.debug("done output generation...") + output_hidden_states = outputs.hidden_states[-1] + output_ids = outputs.sequences + + seg_token_mask = output_ids[:, 1:] == self.seg_token_idx + # hack for IMAGE_TOKEN_INDEX (we suppose that there is only one image, and it is in the front) + model_logger.debug(f"start torch.cat to seg_token_mask...") + seg_token_mask = torch.cat( + [ + torch.zeros((seg_token_mask.shape[0], 255)).bool().cuda(), + seg_token_mask, + ], + dim=1, + ) + model_logger.debug("done torch.cat to seg_token_mask...") + + hidden_states = [] + + assert len(self.model.text_hidden_fcs) == 1 + hidden_states.append(self.model.text_hidden_fcs[0](output_hidden_states)) + + model_logger.debug("start torch.stack to last_hidden_state...") + last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1) + model_logger.debug("done torch.stack to last_hidden_state...") + pred_embeddings = last_hidden_state[seg_token_mask] + + seg_token_counts = seg_token_mask.int().sum(-1) # [bs, ] + seg_token_offset = seg_token_counts.cumsum(-1) + model_logger.debug(f"start torch.cat to seg_token_offset...") + seg_token_offset = torch.cat( + [torch.zeros(1).long().cuda(), seg_token_offset], dim=0 + ) + model_logger.debug("done torch.cat to seg_token_offset...") + + pred_embeddings_ = [] + for i in range(len(seg_token_offset) - 1): + start_i, end_i = seg_token_offset[i], seg_token_offset[i + 1] + pred_embeddings_.append(pred_embeddings[start_i:end_i]) + pred_embeddings = pred_embeddings_ + + model_logger.debug(f"start get_visual_embs to image_embeddings with embedding_key {embedding_key}.") + + if embedding_key is None: + image_embeddings = self.get_visual_embs(images) + else: + try: + image_embeddings = embedding_dict[embedding_key] + except KeyError: + model_logger.debug(f"embedding_key {embedding_key} not in embedding_dict, creating embedding now!") + image_embeddings = self.get_visual_embs(images) + embedding_dict[embedding_key] = image_embeddings + model_logger.debug(f"image embedding added in embedding_dict with embedding_key {embedding_key}!") + + model_logger.debug("done get_visual_embs to image_embeddings...") + + multimask_output = False + pred_masks = [] + for i in range(len(pred_embeddings)): + model_logger.debug(f"start ({i}nth time) visual_model.prompt_encoder to sparse/dense") + ( + sparse_embeddings, + dense_embeddings, + ) = self.model.visual_model.prompt_encoder( + points=None, + boxes=None, + masks=None, + text_embeds=pred_embeddings[i].unsqueeze(1), + ) + model_logger.debug(f"done ({i}nth) visual_model.prompt_encoder to sparse/dense, start sparse2sparse") + sparse_embeddings = sparse_embeddings.to(pred_embeddings[i].dtype) + model_logger.debug(f"done ({i}nth) sparse2sparse, start visual_model.mask_decoder") + low_res_masks, iou_predictions = self.model.visual_model.mask_decoder( + image_embeddings=image_embeddings[i].unsqueeze(0), + image_pe=self.model.visual_model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + ) + model_logger.debug(f"done ({i}nth) visual_model.mask_decoder, start postprocess_masks") + pred_mask = self.model.visual_model.postprocess_masks( + low_res_masks, + input_size=resize_list[i], + original_size=original_size_list[i], + ) + model_logger.debug(f"done ({i}nth) postprocess_masks") + pred_masks.append(pred_mask[:, 0]) + + model_logger.debug(f"env evaluate! ") + return output_ids, pred_masks diff --git a/lisa_on_cuda/__init__.py b/lisa_on_cuda/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e0f362fe183a94858388fff6e978914f516c008e --- /dev/null +++ b/lisa_on_cuda/__init__.py @@ -0,0 +1,18 @@ +import os +from pathlib import Path + +import structlog +from dotenv import load_dotenv +from samgis_core.utilities.session_logger import setup_logging + + +load_dotenv() +project_root_folder = Path(globals().get("__file__", "./_")).absolute().parent +workdir = Path(os.getenv("WORKDIR", project_root_folder)) +static_dist_folder = Path(workdir) / "static" / "dist" +static_dist_folder = Path(os.getenv("FASTAPI_STATIC", static_dist_folder)) +model_folder = Path(project_root_folder / "machine_learning_models") + +log_level = os.getenv("LOG_LEVEL", "INFO") +setup_logging(log_level=log_level) +app_logger = structlog.stdlib.get_logger() diff --git a/lisa_on_cuda/__version__.py b/lisa_on_cuda/__version__.py new file mode 100644 index 0000000000000000000000000000000000000000..7003e8488ecc95763bea057502cf47936b843547 --- /dev/null +++ b/lisa_on_cuda/__version__.py @@ -0,0 +1,8 @@ +import importlib.metadata + + +try: + __version__ = importlib.metadata.version(__package__ or __name__) +except importlib.metadata.PackageNotFoundError or ImportError as e: + print(f"metadata::e: {type(e)}, {e}: package installed?") + __version__ = "1.0.0" diff --git a/lisa_on_cuda/llava/__init__.py b/lisa_on_cuda/llava/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..4d1f016db1028101d45ba7d68cb3f0bcb558c2bb --- /dev/null +++ b/lisa_on_cuda/llava/__init__.py @@ -0,0 +1 @@ +from .model import LlavaLlamaForCausalLM diff --git a/lisa_on_cuda/llava/constants.py b/lisa_on_cuda/llava/constants.py new file mode 100755 index 0000000000000000000000000000000000000000..be8cf0204969a6c973f442b383d8e425d684e826 --- /dev/null +++ b/lisa_on_cuda/llava/constants.py @@ -0,0 +1,12 @@ +CONTROLLER_HEART_BEAT_EXPIRATION = 30 +WORKER_HEART_BEAT_INTERVAL = 15 + +LOGDIR = "." + +# Model Constants +IGNORE_INDEX = -100 +IMAGE_TOKEN_INDEX = -200 +DEFAULT_IMAGE_TOKEN = "" +DEFAULT_IMAGE_PATCH_TOKEN = "" +DEFAULT_IM_START_TOKEN = "" +DEFAULT_IM_END_TOKEN = "" diff --git a/lisa_on_cuda/llava/conversation.py b/lisa_on_cuda/llava/conversation.py new file mode 100755 index 0000000000000000000000000000000000000000..11fe82f0c9277d13050033cbd56caa5cf2c72606 --- /dev/null +++ b/lisa_on_cuda/llava/conversation.py @@ -0,0 +1,399 @@ +import dataclasses +from enum import Enum, auto +from typing import List, Tuple + + +class SeparatorStyle(Enum): + """Different separator style.""" + + SINGLE = auto() + TWO = auto() + MPT = auto() + PLAIN = auto() + LLAMA_2 = auto() + + +@dataclasses.dataclass +class Conversation: + """A class that keeps all conversation history.""" + + system: str + roles: List[str] + messages: List[List[str]] + offset: int + sep_style: SeparatorStyle = SeparatorStyle.SINGLE + sep: str = "###" + sep2: str = None + version: str = "Unknown" + + skip_next: bool = False + + def get_prompt(self): + messages = self.messages + if len(messages) > 0 and type(messages[0][1]) is tuple: + messages = self.messages.copy() + init_role, init_msg = messages[0].copy() + init_msg = init_msg[0].replace("", "").strip() + if "mmtag" in self.version: + messages[0] = (init_role, init_msg) + messages.insert(0, (self.roles[0], "")) + messages.insert(1, (self.roles[1], "Received.")) + else: + messages[0] = (init_role, "\n" + init_msg) + + if self.sep_style == SeparatorStyle.SINGLE: + ret = self.system + self.sep + for role, message in messages: + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + ": " + message + self.sep + else: + ret += role + ":" + elif self.sep_style == SeparatorStyle.TWO: + seps = [self.sep, self.sep2] + ret = self.system + seps[0] + for i, (role, message) in enumerate(messages): + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + ": " + message + seps[i % 2] + else: + ret += role + ":" + elif self.sep_style == SeparatorStyle.MPT: + ret = self.system + self.sep + for role, message in messages: + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + message + self.sep + else: + ret += role + elif self.sep_style == SeparatorStyle.LLAMA_2: + wrap_sys = lambda msg: f"<>\n{msg}\n<>\n\n" + wrap_inst = lambda msg: f"[INST] {msg} [/INST]" + ret = "" + + for i, (role, message) in enumerate(messages): + if i == 0: + assert message, "first message should not be none" + assert role == self.roles[0], "first message should come from user" + if message: + if type(message) is tuple: + message, _, _ = message + if i == 0: + message = wrap_sys(self.system) + message + if i % 2 == 0: + message = wrap_inst(message) + ret += self.sep + message + else: + ret += " " + message + " " + self.sep2 + else: + ret += "" + ret = ret.lstrip(self.sep) + elif self.sep_style == SeparatorStyle.PLAIN: + seps = [self.sep, self.sep2] + ret = self.system + for i, (role, message) in enumerate(messages): + if message: + if type(message) is tuple: + message, _, _ = message + ret += message + seps[i % 2] + else: + ret += "" + else: + raise ValueError(f"Invalid style: {self.sep_style}") + + return ret + + def append_message(self, role, message): + self.messages.append([role, message]) + + def get_images(self, return_pil=False): + images = [] + for i, (role, msg) in enumerate(self.messages[self.offset :]): + if i % 2 == 0: + if type(msg) is tuple: + import base64 + from io import BytesIO + + from PIL import Image + + msg, image, image_process_mode = msg + if image_process_mode == "Pad": + + def expand2square(pil_img, background_color=(122, 116, 104)): + width, height = pil_img.size + if width == height: + return pil_img + elif width > height: + result = Image.new( + pil_img.mode, (width, width), background_color + ) + result.paste(pil_img, (0, (width - height) // 2)) + return result + else: + result = Image.new( + pil_img.mode, (height, height), background_color + ) + result.paste(pil_img, ((height - width) // 2, 0)) + return result + + image = expand2square(image) + elif image_process_mode == "Crop": + pass + elif image_process_mode == "Resize": + image = image.resize((336, 336)) + else: + raise ValueError( + f"Invalid image_process_mode: {image_process_mode}" + ) + max_hw, min_hw = max(image.size), min(image.size) + aspect_ratio = max_hw / min_hw + max_len, min_len = 800, 400 + shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) + longest_edge = int(shortest_edge * aspect_ratio) + W, H = image.size + if H > W: + H, W = longest_edge, shortest_edge + else: + H, W = shortest_edge, longest_edge + image = image.resize((W, H)) + if return_pil: + images.append(image) + else: + buffered = BytesIO() + image.save(buffered, format="PNG") + img_b64_str = base64.b64encode(buffered.getvalue()).decode() + images.append(img_b64_str) + return images + + def to_gradio_chatbot(self): + ret = [] + for i, (role, msg) in enumerate(self.messages[self.offset :]): + if i % 2 == 0: + if type(msg) is tuple: + import base64 + from io import BytesIO + + msg, image, image_process_mode = msg + max_hw, min_hw = max(image.size), min(image.size) + aspect_ratio = max_hw / min_hw + max_len, min_len = 800, 400 + shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) + longest_edge = int(shortest_edge * aspect_ratio) + W, H = image.size + if H > W: + H, W = longest_edge, shortest_edge + else: + H, W = shortest_edge, longest_edge + image = image.resize((W, H)) + buffered = BytesIO() + image.save(buffered, format="JPEG") + img_b64_str = base64.b64encode(buffered.getvalue()).decode() + img_str = f'user upload image' + ret.append([img_str, None]) + msg = msg.replace("", "").strip() + if len(msg) > 0: + ret.append([msg, None]) + else: + ret.append([msg, None]) + else: + ret[-1][-1] = msg + return ret + + def copy(self): + return Conversation( + system=self.system, + roles=self.roles, + messages=[[x, y] for x, y in self.messages], + offset=self.offset, + sep_style=self.sep_style, + sep=self.sep, + sep2=self.sep2, + version=self.version, + ) + + def dict(self): + if len(self.get_images()) > 0: + return { + "system": self.system, + "roles": self.roles, + "messages": [ + [x, y[0] if type(y) is tuple else y] for x, y in self.messages + ], + "offset": self.offset, + "sep": self.sep, + "sep2": self.sep2, + } + return { + "system": self.system, + "roles": self.roles, + "messages": self.messages, + "offset": self.offset, + "sep": self.sep, + "sep2": self.sep2, + } + + +conv_vicuna_v0 = Conversation( + system="A chat between a curious human and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the human's questions.", + roles=("Human", "Assistant"), + messages=( + ( + "Human", + "What are the key differences between renewable and non-renewable energy sources?", + ), + ( + "Assistant", + "Renewable energy sources are those that can be replenished naturally in a relatively " + "short amount of time, such as solar, wind, hydro, geothermal, and biomass. " + "Non-renewable energy sources, on the other hand, are finite and will eventually be " + "depleted, such as coal, oil, and natural gas. Here are some key differences between " + "renewable and non-renewable energy sources:\n" + "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable " + "energy sources are finite and will eventually run out.\n" + "2. Environmental impact: Renewable energy sources have a much lower environmental impact " + "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, " + "and other negative effects.\n" + "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically " + "have lower operational costs than non-renewable sources.\n" + "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote " + "locations than non-renewable sources.\n" + "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different " + "situations and needs, while non-renewable sources are more rigid and inflexible.\n" + "6. Sustainability: Renewable energy sources are more sustainable over the long term, while " + "non-renewable sources are not, and their depletion can lead to economic and social instability.\n", + ), + ), + offset=2, + sep_style=SeparatorStyle.SINGLE, + sep="###", +) + +conv_vicuna_v1 = Conversation( + system="A chat between a curious user and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the user's questions.", + roles=("USER", "ASSISTANT"), + version="v1", + messages=(), + offset=0, + sep_style=SeparatorStyle.TWO, + sep=" ", + sep2="", +) + +conv_llama_2 = Conversation( + system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. + +If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""", + roles=("USER", "ASSISTANT"), + version="llama_v2", + messages=(), + offset=0, + sep_style=SeparatorStyle.LLAMA_2, + sep="", + sep2="", +) + +conv_llava_llama_2 = Conversation( + system="You are a helpful language and vision assistant. " + "You are able to understand the visual content that the user provides, " + "and assist the user with a variety of tasks using natural language.", + roles=("USER", "ASSISTANT"), + version="llama_v2", + messages=(), + offset=0, + sep_style=SeparatorStyle.LLAMA_2, + sep="", + sep2="", +) + +conv_mpt = Conversation( + system="""<|im_start|>system +A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""", + roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), + version="mpt", + messages=(), + offset=0, + sep_style=SeparatorStyle.MPT, + sep="<|im_end|>", +) + +conv_llava_plain = Conversation( + system="", + roles=("", ""), + messages=(), + offset=0, + sep_style=SeparatorStyle.PLAIN, + sep="\n", +) + +conv_llava_v0 = Conversation( + system="A chat between a curious human and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the human's questions.", + roles=("Human", "Assistant"), + messages=(("Human", "Hi!"), ("Assistant", "Hi there! How can I help you today?")), + offset=2, + sep_style=SeparatorStyle.SINGLE, + sep="###", +) + +conv_llava_v0_mmtag = Conversation( + system="A chat between a curious user and an artificial intelligence assistant. " + "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." + "The visual content will be provided with the following format: visual content.", + roles=("Human", "Assistant"), + messages=(), + offset=0, + sep_style=SeparatorStyle.SINGLE, + sep="###", + version="v0_mmtag", +) + +conv_llava_v1 = Conversation( + system="A chat between a curious human and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the human's questions.", + roles=("USER", "ASSISTANT"), + version="v1", + messages=(), + offset=0, + sep_style=SeparatorStyle.TWO, + sep=" ", + sep2="", +) + +conv_llava_v1_mmtag = Conversation( + system="A chat between a curious user and an artificial intelligence assistant. " + "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." + "The visual content will be provided with the following format: visual content.", + roles=("USER", "ASSISTANT"), + messages=(), + offset=0, + sep_style=SeparatorStyle.TWO, + sep=" ", + sep2="", + version="v1_mmtag", +) + +default_conversation = conv_vicuna_v0 +conv_templates = { + "default": conv_vicuna_v0, + "v0": conv_vicuna_v0, + "v1": conv_vicuna_v1, + "vicuna_v1": conv_vicuna_v1, + "llama_2": conv_llama_2, + "plain": conv_llava_plain, + "v0_plain": conv_llava_plain, + "llava_v0": conv_llava_v0, + "v0_mmtag": conv_llava_v0_mmtag, + "llava_v1": conv_llava_v1, + "v1_mmtag": conv_llava_v1_mmtag, + "llava_llama_2": conv_llava_llama_2, + "mpt": conv_mpt, +} + + +if __name__ == "__main__": + print(default_conversation.get_prompt()) diff --git a/lisa_on_cuda/llava/mm_utils.py b/lisa_on_cuda/llava/mm_utils.py new file mode 100755 index 0000000000000000000000000000000000000000..92b1f5a6e2f7e41777a598ac7064a9b345c11e74 --- /dev/null +++ b/lisa_on_cuda/llava/mm_utils.py @@ -0,0 +1,88 @@ +import base64 +from io import BytesIO + +import torch +from PIL import Image +from transformers import StoppingCriteria + +from .constants import IMAGE_TOKEN_INDEX + + +def load_image_from_base64(image): + return Image.open(BytesIO(base64.b64decode(image))) + + +def process_images(images, image_processor, model_cfg): + return image_processor(images, return_tensors="pt")["pixel_values"] + + +def tokenizer_image_token( + prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None +): + prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("")] + + def insert_separator(X, sep): + return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] + + input_ids = [] + offset = 0 + if ( + len(prompt_chunks) > 0 + and len(prompt_chunks[0]) > 0 + and prompt_chunks[0][0] == tokenizer.bos_token_id + ): + offset = 1 + input_ids.append(prompt_chunks[0][0]) + + for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): + input_ids.extend(x[offset:]) + + if return_tensors is not None: + if return_tensors == "pt": + return torch.tensor(input_ids, dtype=torch.long) + raise ValueError(f"Unsupported tensor type: {return_tensors}") + return input_ids + + +def get_model_name_from_path(model_path): + model_path = model_path.strip("/") + model_paths = model_path.split("/") + if model_paths[-1].startswith("checkpoint-"): + return model_paths[-2] + "_" + model_paths[-1] + else: + return model_paths[-1] + + +class KeywordsStoppingCriteria(StoppingCriteria): + def __init__(self, keywords, tokenizer, input_ids): + self.keywords = keywords + self.keyword_ids = [] + for keyword in keywords: + cur_keyword_ids = tokenizer(keyword).input_ids + if ( + len(cur_keyword_ids) > 1 + and cur_keyword_ids[0] == tokenizer.bos_token_id + ): + cur_keyword_ids = cur_keyword_ids[1:] + self.keyword_ids.append(torch.tensor(cur_keyword_ids)) + self.tokenizer = tokenizer + self.start_len = input_ids.shape[1] + + def __call__( + self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs + ) -> bool: + assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO + offset = min(output_ids.shape[1] - self.start_len, 3) + self.keyword_ids = [ + keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids + ] + for keyword_id in self.keyword_ids: + if output_ids[0, -keyword_id.shape[0] :] == keyword_id: + return True + outputs = self.tokenizer.batch_decode( + output_ids[:, -offset:], skip_special_tokens=True + )[0] + for keyword in self.keywords: + if keyword in outputs: + return True + return False diff --git a/lisa_on_cuda/llava/model/__init__.py b/lisa_on_cuda/llava/model/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..59e87786afcd1ba81eb86f4e7755583327bec9a2 --- /dev/null +++ b/lisa_on_cuda/llava/model/__init__.py @@ -0,0 +1,2 @@ +from .language_model.llava_llama import LlavaConfig, LlavaLlamaForCausalLM +from .language_model.llava_mpt import LlavaMPTConfig, LlavaMPTForCausalLM diff --git a/lisa_on_cuda/llava/model/apply_delta.py b/lisa_on_cuda/llava/model/apply_delta.py new file mode 100755 index 0000000000000000000000000000000000000000..9bc0be9e04242891ff6bddb807bd2301f891239d --- /dev/null +++ b/lisa_on_cuda/llava/model/apply_delta.py @@ -0,0 +1,57 @@ +""" +Usage: +python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta +""" +import argparse + +import torch +from tqdm import tqdm +from transformers import AutoModelForCausalLM, AutoTokenizer + +from .language_model.llava_llama import LlavaLlamaForCausalLM + + +def apply_delta(base_model_path, target_model_path, delta_path): + print("Loading base model") + base = AutoModelForCausalLM.from_pretrained( + base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True + ) + + print("Loading delta") + delta = LlavaLlamaForCausalLM.from_pretrained( + delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True + ) + delta_tokenizer = AutoTokenizer.from_pretrained(delta_path) + + print("Applying delta") + for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"): + if name not in base.state_dict(): + assert name in [ + "model.mm_projector.weight", + "model.mm_projector.bias", + ], f"{name} not in base model" + continue + if param.data.shape == base.state_dict()[name].shape: + param.data += base.state_dict()[name] + else: + assert name in [ + "model.embed_tokens.weight", + "lm_head.weight", + ], f"{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}" + bparam = base.state_dict()[name] + param.data[: bparam.shape[0], : bparam.shape[1]] += bparam + + print("Saving target model") + delta.save_pretrained(target_model_path) + delta_tokenizer.save_pretrained(target_model_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--base-model-path", type=str, required=True) + parser.add_argument("--target-model-path", type=str, required=True) + parser.add_argument("--delta-path", type=str, required=True) + + args = parser.parse_args() + + apply_delta(args.base_model_path, args.target_model_path, args.delta_path) diff --git a/lisa_on_cuda/llava/model/builder.py b/lisa_on_cuda/llava/model/builder.py new file mode 100755 index 0000000000000000000000000000000000000000..360c91be89d3dcfd47edba0d7f282eff4a8cae61 --- /dev/null +++ b/lisa_on_cuda/llava/model/builder.py @@ -0,0 +1,206 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import os +import shutil + +import torch +from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig + +from .language_model.llava_llama import LlavaLlamaForCausalLM +from .language_model.llava_mpt import LlavaMPTForCausalLM +from ..constants import DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN + + +def load_pretrained_model( + model_path, + model_base, + model_name, + load_8bit=False, + load_4bit=False, + device_map="auto", +): + kwargs = {"device_map": device_map} + + if load_8bit: + kwargs["load_in_8bit"] = True + elif load_4bit: + kwargs["load_in_4bit"] = True + kwargs["quantization_config"] = BitsAndBytesConfig( + load_in_4bit=True, + bnb_4bit_compute_dtype=torch.float16, + bnb_4bit_use_double_quant=True, + bnb_4bit_quant_type="nf4", + ) + else: + kwargs["torch_dtype"] = torch.float16 + + if "llava" in model_name.lower(): + # Load LLaVA model + if "lora" in model_name.lower() and model_base is not None: + lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) + print("Loading LLaVA from base model...") + model = LlavaLlamaForCausalLM.from_pretrained( + model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs + ) + token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features + if model.lm_head.weight.shape[0] != token_num: + model.lm_head.weight = torch.nn.Parameter( + torch.empty( + token_num, tokem_dim, device=model.device, dtype=model.dtype + ) + ) + model.model.embed_tokens.weight = torch.nn.Parameter( + torch.empty( + token_num, tokem_dim, device=model.device, dtype=model.dtype + ) + ) + + print("Loading additional LLaVA weights...") + if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): + non_lora_trainables = torch.load( + os.path.join(model_path, "non_lora_trainables.bin"), + map_location="cpu", + ) + else: + # this is probably from HF Hub + from huggingface_hub import hf_hub_download + + def load_from_hf(repo_id, filename, subfolder=None): + cache_file = hf_hub_download( + repo_id=repo_id, filename=filename, subfolder=subfolder + ) + return torch.load(cache_file, map_location="cpu") + + non_lora_trainables = load_from_hf( + model_path, "non_lora_trainables.bin" + ) + non_lora_trainables = { + (k[11:] if k.startswith("base_model.") else k): v + for k, v in non_lora_trainables.items() + } + if any(k.startswith("model.model.") for k in non_lora_trainables): + non_lora_trainables = { + (k[6:] if k.startswith("model.") else k): v + for k, v in non_lora_trainables.items() + } + model.load_state_dict(non_lora_trainables, strict=False) + + from peft import PeftModel + + print("Loading LoRA weights...") + model = PeftModel.from_pretrained(model, model_path) + print("Merging LoRA weights...") + model = model.merge_and_unload() + print("Model is loaded...") + elif model_base is not None: + # this may be mm projector only + print("Loading LLaVA from base model...") + if "mpt" in model_name.lower(): + if not os.path.isfile(os.path.join(model_path, "configuration_mpt.py")): + shutil.copyfile( + os.path.join(model_base, "configuration_mpt.py"), + os.path.join(model_path, "configuration_mpt.py"), + ) + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) + cfg_pretrained = AutoConfig.from_pretrained( + model_path, trust_remote_code=True + ) + model = LlavaMPTForCausalLM.from_pretrained( + model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs + ) + else: + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) + cfg_pretrained = AutoConfig.from_pretrained(model_path) + model = LlavaLlamaForCausalLM.from_pretrained( + model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs + ) + + mm_projector_weights = torch.load( + os.path.join(model_path, "mm_projector.bin"), map_location="cpu" + ) + mm_projector_weights = { + k: v.to(torch.float16) for k, v in mm_projector_weights.items() + } + model.load_state_dict(mm_projector_weights, strict=False) + else: + if "mpt" in model_name.lower(): + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) + model = LlavaMPTForCausalLM.from_pretrained( + model_path, low_cpu_mem_usage=True, **kwargs + ) + else: + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) + model = LlavaLlamaForCausalLM.from_pretrained( + model_path, low_cpu_mem_usage=True, **kwargs + ) + else: + # Load language model + if model_base is not None: + # PEFT model + from peft import PeftModel + + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) + model = AutoModelForCausalLM.from_pretrained( + model_base, + torch_dtype=torch.float16, + low_cpu_mem_usage=True, + device_map="auto", + ) + print(f"Loading LoRA weights from {model_path}") + model = PeftModel.from_pretrained(model, model_path) + print(f"Merging weights") + model = model.merge_and_unload() + print("Convert to FP16...") + model.to(torch.float16) + else: + use_fast = False + if "mpt" in model_name.lower(): + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) + model = AutoModelForCausalLM.from_pretrained( + model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs + ) + else: + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) + model = AutoModelForCausalLM.from_pretrained( + model_path, low_cpu_mem_usage=True, **kwargs + ) + + image_processor = None + + if "llava" in model_name.lower(): + mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) + mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) + if mm_use_im_patch_token: + tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) + if mm_use_im_start_end: + tokenizer.add_tokens( + [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True + ) + model.resize_token_embeddings(len(tokenizer)) + + vision_tower = model.get_vision_tower() + if not vision_tower.is_loaded: + vision_tower.load_model() + vision_tower.to(device="cuda", dtype=torch.float16) + image_processor = vision_tower.image_processor + + if hasattr(model.config, "max_sequence_length"): + context_len = model.config.max_sequence_length + else: + context_len = 2048 + + return tokenizer, model, image_processor, context_len diff --git a/lisa_on_cuda/llava/model/consolidate.py b/lisa_on_cuda/llava/model/consolidate.py new file mode 100755 index 0000000000000000000000000000000000000000..3a81b7db5645ee1d35ef81b21d50ceaeb62990f5 --- /dev/null +++ b/lisa_on_cuda/llava/model/consolidate.py @@ -0,0 +1,30 @@ +""" +Usage: +python3 -m llava.model.consolidate --src ~/model_weights/llava-7b --dst ~/model_weights/llava-7b_consolidate +""" +import argparse + +import torch +from .utils import auto_upgrade +from transformers import AutoModelForCausalLM, AutoTokenizer + + +def consolidate_ckpt(src_path, dst_path): + print("Loading model") + auto_upgrade(src_path) + src_model = AutoModelForCausalLM.from_pretrained( + src_path, torch_dtype=torch.float16, low_cpu_mem_usage=True + ) + src_tokenizer = AutoTokenizer.from_pretrained(src_path, use_fast=False) + src_model.save_pretrained(dst_path) + src_tokenizer.save_pretrained(dst_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--src", type=str, required=True) + parser.add_argument("--dst", type=str, required=True) + + args = parser.parse_args() + + consolidate_ckpt(args.src, args.dst) diff --git a/lisa_on_cuda/llava/model/language_model/llava_llama.py b/lisa_on_cuda/llava/model/language_model/llava_llama.py new file mode 100755 index 0000000000000000000000000000000000000000..460c001998a41ce10a901acde4c3c862b7cfc57c --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/llava_llama.py @@ -0,0 +1,167 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +from torch.nn import CrossEntropyLoss +from transformers import (AutoConfig, AutoModelForCausalLM, LlamaConfig, + LlamaForCausalLM, LlamaModel) +from transformers.modeling_outputs import CausalLMOutputWithPast + +from ..llava_arch import LlavaMetaForCausalLM, LlavaMetaModel + + +class LlavaConfig(LlamaConfig): + model_type = "llava" + + +class LlavaLlamaModel(LlavaMetaModel, LlamaModel): + config_class = LlavaConfig + + def __init__(self, config: LlamaConfig): + super(LlavaLlamaModel, self).__init__(config) + + +class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM): + config_class = LlavaConfig + + def __init__(self, config): + super(LlamaForCausalLM, self).__init__(config) + + self.model = LlavaLlamaModel(config) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_model(self): + return self.model + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + images: Optional[torch.FloatTensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + output_attentions = ( + output_attentions + if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states + if output_hidden_states is not None + else self.config.output_hidden_states + ) + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + ( + input_ids, + attention_mask, + past_key_values, + inputs_embeds, + labels, + ) = self.prepare_inputs_labels_for_multimodal( + input_ids, attention_mask, past_key_values, labels, images + ) + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model/pipeline parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + if self.training: + output_hidden_states = outputs.hidden_states + else: + output_hidden_states = hidden_states + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=output_hidden_states, # outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + inputs_embeds=None, + images=None, + **kwargs + ): + if past_key_values: + input_ids = input_ids[:, -1:] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + "images": images, + } + ) + return model_inputs + + +AutoConfig.register("llava", LlavaConfig) +AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM) diff --git a/lisa_on_cuda/llava/model/language_model/llava_mpt.py b/lisa_on_cuda/llava/model/language_model/llava_mpt.py new file mode 100755 index 0000000000000000000000000000000000000000..1549fb501b319d6382f2d4e3d9c82f83307397ba --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/llava_mpt.py @@ -0,0 +1,174 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import math +import warnings +from typing import List, Optional, Tuple + +import torch +import torch.nn.functional as F +from transformers import AutoConfig, AutoModelForCausalLM +from transformers.modeling_outputs import CausalLMOutputWithPast + +from ..llava_arch import LlavaMetaForCausalLM, LlavaMetaModel +from .mpt.modeling_mpt import MPTConfig, MPTForCausalLM, MPTModel + + +class LlavaMPTConfig(MPTConfig): + model_type = "llava_mpt" + + +class LlavaMPTModel(LlavaMetaModel, MPTModel): + config_class = LlavaMPTConfig + + def __init__(self, config: MPTConfig): + config.hidden_size = config.d_model + super(LlavaMPTModel, self).__init__(config) + + def embed_tokens(self, x): + return self.wte(x) + + +class LlavaMPTForCausalLM(MPTForCausalLM, LlavaMetaForCausalLM): + config_class = LlavaMPTConfig + supports_gradient_checkpointing = True + + def __init__(self, config): + super(MPTForCausalLM, self).__init__(config) + + if not config.tie_word_embeddings: + raise ValueError("MPTForCausalLM only supports tied word embeddings") + self.transformer = LlavaMPTModel(config) + self.logit_scale = None + if config.logit_scale is not None: + logit_scale = config.logit_scale + if isinstance(logit_scale, str): + if logit_scale == "inv_sqrt_d_model": + logit_scale = 1 / math.sqrt(config.d_model) + else: + raise ValueError( + f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." + ) + self.logit_scale = logit_scale + + def get_model(self): + return self.transformer + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, LlavaMPTModel): + module.gradient_checkpointing = value + + def forward( + self, + input_ids: torch.LongTensor, + past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, + attention_mask: Optional[torch.ByteTensor] = None, + prefix_mask: Optional[torch.ByteTensor] = None, + sequence_id: Optional[torch.LongTensor] = None, + labels: Optional[torch.LongTensor] = None, + return_dict: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + use_cache: Optional[bool] = None, + images=None, + ): + return_dict = ( + return_dict if return_dict is not None else self.config.return_dict + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + ( + input_ids, + attention_mask, + past_key_values, + inputs_embeds, + labels, + ) = self.prepare_inputs_labels_for_multimodal( + input_ids, attention_mask, past_key_values, labels, images + ) + outputs = self.transformer( + input_ids=input_ids, + inputs_embeds=inputs_embeds, + past_key_values=past_key_values, + attention_mask=attention_mask, + prefix_mask=prefix_mask, + sequence_id=sequence_id, + return_dict=return_dict, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + use_cache=use_cache, + ) + # FIXME: this is a hack to fix the multiple gpu inference issue in https://github.com/haotian-liu/LLaVA/issues/338 + logits = F.linear( + outputs.last_hidden_state.to(self.transformer.wte.weight.device), + self.transformer.wte.weight, + ) + if self.logit_scale is not None: + if self.logit_scale == 0: + warnings.warn( + f"Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs." + ) + logits *= self.logit_scale + loss = None + if labels is not None: + labels = torch.roll(labels, shifts=-1) + labels[:, -1] = -100 + loss = F.cross_entropy( + logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1) + ) + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs + ): + if inputs_embeds is not None: + raise NotImplementedError("inputs_embeds is not implemented for MPT yet") + attention_mask = kwargs["attention_mask"].bool() + if attention_mask[:, -1].sum() != attention_mask.shape[0]: + raise NotImplementedError( + "MPT does not support generation with right padding." + ) + if self.transformer.attn_uses_sequence_id and self.training: + sequence_id = torch.zeros_like(input_ids[:1]) + else: + sequence_id = None + if past_key_values is not None: + input_ids = input_ids[:, -1].unsqueeze(-1) + if self.transformer.prefix_lm: + prefix_mask = torch.ones_like(attention_mask) + if kwargs.get("use_cache") == False: + raise NotImplementedError( + "MPT with prefix_lm=True does not support use_cache=False." + ) + else: + prefix_mask = None + return { + "input_ids": input_ids, + "attention_mask": attention_mask, + "prefix_mask": prefix_mask, + "sequence_id": sequence_id, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache", True), + "images": kwargs.get("images", None), + } + + +AutoConfig.register("llava_mpt", LlavaMPTConfig) +AutoModelForCausalLM.register(LlavaMPTConfig, LlavaMPTForCausalLM) diff --git a/lisa_on_cuda/llava/model/language_model/mpt/adapt_tokenizer.py b/lisa_on_cuda/llava/model/language_model/mpt/adapt_tokenizer.py new file mode 100755 index 0000000000000000000000000000000000000000..b6c2acaca8bd5bab095bad9f45208f7961297057 --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/mpt/adapt_tokenizer.py @@ -0,0 +1,46 @@ +from typing import Union + +from transformers import (AutoTokenizer, PreTrainedTokenizer, + PreTrainedTokenizerFast) + +Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] +NUM_SENTINEL_TOKENS: int = 100 + + +def adapt_tokenizer_for_denoising(tokenizer: Tokenizer): + """Adds sentinel tokens and padding token (if missing). + + Expands the tokenizer vocabulary to include sentinel tokens + used in mixture-of-denoiser tasks as well as a padding token. + + All added tokens are added as special tokens. No tokens are + added if sentinel tokens and padding token already exist. + """ + sentinels_to_add = [f"" for i in range(NUM_SENTINEL_TOKENS)] + tokenizer.add_tokens(sentinels_to_add, special_tokens=True) + if tokenizer.pad_token is None: + tokenizer.add_tokens("", special_tokens=True) + tokenizer.pad_token = "" + assert tokenizer.pad_token_id is not None + sentinels = "".join([f"" for i in range(NUM_SENTINEL_TOKENS)]) + _sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids + tokenizer.sentinel_token_ids = _sentinel_token_ids + + +class AutoTokenizerForMOD(AutoTokenizer): + """AutoTokenizer + Adaptation for MOD. + + A simple wrapper around AutoTokenizer to make instantiating + an MOD-adapted tokenizer a bit easier. + + MOD-adapted tokenizers have sentinel tokens (e.g., ), + a padding token, and a property to get the token ids of the + sentinel tokens. + """ + + @classmethod + def from_pretrained(cls, *args, **kwargs): + """See `AutoTokenizer.from_pretrained` docstring.""" + tokenizer = super().from_pretrained(*args, **kwargs) + adapt_tokenizer_for_denoising(tokenizer) + return tokenizer diff --git a/lisa_on_cuda/llava/model/language_model/mpt/attention.py b/lisa_on_cuda/llava/model/language_model/mpt/attention.py new file mode 100755 index 0000000000000000000000000000000000000000..24fcd8fb1d1fd65c8342f85a2329bbdf791fed0f --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/mpt/attention.py @@ -0,0 +1,526 @@ +"""Attention layers.""" +import math +import warnings +from typing import Optional + +import torch +import torch.nn as nn +from einops import rearrange +from packaging import version +from torch import nn + +from .norm import LPLayerNorm + + +def _reset_is_causal( + num_query_tokens: int, num_key_tokens: int, original_is_causal: bool +): + if original_is_causal and num_query_tokens != num_key_tokens: + if num_query_tokens != 1: + raise NotImplementedError( + "MPT does not support query and key with different number of tokens, unless number of query tokens is 1." + ) + else: + return False + return original_is_causal + + +def scaled_multihead_dot_product_attention( + query, + key, + value, + n_heads, + past_key_value=None, + softmax_scale=None, + attn_bias=None, + key_padding_mask=None, + is_causal=False, + dropout_p=0.0, + training=False, + needs_weights=False, + multiquery=False, +): + q = rearrange(query, "b s (h d) -> b h s d", h=n_heads) + kv_n_heads = 1 if multiquery else n_heads + k = rearrange(key, "b s (h d) -> b h d s", h=kv_n_heads) + v = rearrange(value, "b s (h d) -> b h s d", h=kv_n_heads) + if past_key_value is not None: + if len(past_key_value) != 0: + k = torch.cat([past_key_value[0], k], dim=3) + v = torch.cat([past_key_value[1], v], dim=2) + past_key_value = (k, v) + (b, _, s_q, d) = q.shape + s_k = k.size(-1) + if softmax_scale is None: + softmax_scale = 1 / math.sqrt(d) + attn_weight = q.matmul(k) * softmax_scale + if attn_bias is not None: + _s_q = max(0, attn_bias.size(2) - s_q) + _s_k = max(0, attn_bias.size(3) - s_k) + attn_bias = attn_bias[:, :, _s_q:, _s_k:] + if ( + attn_bias.size(-1) != 1 + and attn_bias.size(-1) != s_k + or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q) + ): + raise RuntimeError( + f"attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}." + ) + attn_weight = attn_weight + attn_bias + min_val = torch.finfo(q.dtype).min + if key_padding_mask is not None: + if attn_bias is not None: + warnings.warn( + "Propogating key_padding_mask to the attention module " + + "and applying it within the attention module can cause " + + "unneccessary computation/memory usage. Consider integrating " + + "into attn_bias once and passing that to each attention " + + "module instead." + ) + attn_weight = attn_weight.masked_fill( + ~key_padding_mask.view((b, 1, 1, s_k)), min_val + ) + if is_causal and (not q.size(2) == 1): + s = max(s_q, s_k) + causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16) + causal_mask = causal_mask.tril() + causal_mask = causal_mask.to(torch.bool) + causal_mask = ~causal_mask + causal_mask = causal_mask[-s_q:, -s_k:] + attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val) + attn_weight = torch.softmax(attn_weight, dim=-1) + if dropout_p: + attn_weight = torch.nn.functional.dropout( + attn_weight, p=dropout_p, training=training, inplace=True + ) + out = attn_weight.to(v.dtype).matmul(v) + out = rearrange(out, "b h s d -> b s (h d)") + if needs_weights: + return (out, attn_weight, past_key_value) + return (out, None, past_key_value) + + +def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]): + for tensor in tensors: + if tensor.dtype not in valid_dtypes: + raise TypeError( + f"tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}." + ) + if not tensor.is_cuda: + raise TypeError( + f"Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r})." + ) + + +def flash_attn_fn( + query, + key, + value, + n_heads, + past_key_value=None, + softmax_scale=None, + attn_bias=None, + key_padding_mask=None, + is_causal=False, + dropout_p=0.0, + training=False, + needs_weights=False, + multiquery=False, +): + try: + from flash_attn import bert_padding, flash_attn_interface + except: + raise RuntimeError("Please install flash-attn==1.0.3.post0") + check_valid_inputs(query, key, value) + if past_key_value is not None: + if len(past_key_value) != 0: + key = torch.cat([past_key_value[0], key], dim=1) + value = torch.cat([past_key_value[1], value], dim=1) + past_key_value = (key, value) + if attn_bias is not None: + _s_q = max(0, attn_bias.size(2) - query.size(1)) + _s_k = max(0, attn_bias.size(3) - key.size(1)) + attn_bias = attn_bias[:, :, _s_q:, _s_k:] + if attn_bias is not None: + raise NotImplementedError(f"attn_bias not implemented for flash attn.") + (batch_size, seqlen) = query.shape[:2] + if key_padding_mask is None: + key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool) + query_padding_mask = key_padding_mask[:, -query.size(1) :] + (query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input( + query, query_padding_mask + ) + query_unpad = rearrange(query_unpad, "nnz (h d) -> nnz h d", h=n_heads) + (key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input( + key, key_padding_mask + ) + key_unpad = rearrange( + key_unpad, "nnz (h d) -> nnz h d", h=1 if multiquery else n_heads + ) + (value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask) + value_unpad = rearrange( + value_unpad, "nnz (h d) -> nnz h d", h=1 if multiquery else n_heads + ) + if multiquery: + key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1)) + value_unpad = value_unpad.expand( + value_unpad.size(0), n_heads, value_unpad.size(-1) + ) + dropout_p = dropout_p if training else 0.0 + reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) + output_unpad = flash_attn_interface.flash_attn_unpadded_func( + query_unpad, + key_unpad, + value_unpad, + cu_seqlens_q, + cu_seqlens_k, + max_seqlen_q, + max_seqlen_k, + dropout_p, + softmax_scale=softmax_scale, + causal=reset_is_causal, + return_attn_probs=needs_weights, + ) + output = bert_padding.pad_input( + rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices_q, batch_size, seqlen + ) + return (output, None, past_key_value) + + +def triton_flash_attn_fn( + query, + key, + value, + n_heads, + past_key_value=None, + softmax_scale=None, + attn_bias=None, + key_padding_mask=None, + is_causal=False, + dropout_p=0.0, + training=False, + needs_weights=False, + multiquery=False, +): + try: + from .flash_attn_triton import flash_attn_func + except: + _installed = False + if version.parse(torch.__version__) < version.parse("2.0.0"): + _installed = True + try: + from flash_attn.flash_attn_triton import flash_attn_func + except: + _installed = False + if not _installed: + raise RuntimeError( + "Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed." + ) + check_valid_inputs(query, key, value) + if past_key_value is not None: + if len(past_key_value) != 0: + key = torch.cat([past_key_value[0], key], dim=1) + value = torch.cat([past_key_value[1], value], dim=1) + past_key_value = (key, value) + if attn_bias is not None: + _s_q = max(0, attn_bias.size(2) - query.size(1)) + _s_k = max(0, attn_bias.size(3) - key.size(1)) + attn_bias = attn_bias[:, :, _s_q:, _s_k:] + if dropout_p: + raise NotImplementedError(f"Dropout not implemented for attn_impl: triton.") + if needs_weights: + raise NotImplementedError(f"attn_impl: triton cannot return attn weights.") + if key_padding_mask is not None: + warnings.warn( + "Propagating key_padding_mask to the attention module " + + "and applying it within the attention module can cause " + + "unnecessary computation/memory usage. Consider integrating " + + "into attn_bias once and passing that to each attention " + + "module instead." + ) + (b_size, s_k) = key_padding_mask.shape[:2] + if attn_bias is None: + attn_bias = query.new_zeros(b_size, 1, 1, s_k) + attn_bias = attn_bias.masked_fill( + ~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min + ) + query = rearrange(query, "b s (h d) -> b s h d", h=n_heads) + key = rearrange(key, "b s (h d) -> b s h d", h=1 if multiquery else n_heads) + value = rearrange(value, "b s (h d) -> b s h d", h=1 if multiquery else n_heads) + if multiquery: + key = key.expand(*key.shape[:2], n_heads, key.size(-1)) + value = value.expand(*value.shape[:2], n_heads, value.size(-1)) + reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) + attn_output = flash_attn_func( + query, key, value, attn_bias, reset_is_causal, softmax_scale + ) + output = attn_output.view(*attn_output.shape[:2], -1) + return (output, None, past_key_value) + + +class MultiheadAttention(nn.Module): + """Multi-head self attention. + + Using torch or triton attention implemetation enables user to also use + additive bias. + """ + + def __init__( + self, + d_model: int, + n_heads: int, + attn_impl: str = "triton", + clip_qkv: Optional[float] = None, + qk_ln: bool = False, + softmax_scale: Optional[float] = None, + attn_pdrop: float = 0.0, + low_precision_layernorm: bool = False, + verbose: int = 0, + device: Optional[str] = None, + ): + super().__init__() + self.attn_impl = attn_impl + self.clip_qkv = clip_qkv + self.qk_ln = qk_ln + self.d_model = d_model + self.n_heads = n_heads + self.softmax_scale = softmax_scale + if self.softmax_scale is None: + self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) + self.attn_dropout_p = attn_pdrop + self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device) + fuse_splits = (d_model, 2 * d_model) + self.Wqkv._fused = (0, fuse_splits) + if self.qk_ln: + layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm + self.q_ln = layernorm_class(self.d_model, device=device) + self.k_ln = layernorm_class(self.d_model, device=device) + if self.attn_impl == "flash": + self.attn_fn = flash_attn_fn + elif self.attn_impl == "triton": + self.attn_fn = triton_flash_attn_fn + if verbose: + warnings.warn( + "While `attn_impl: triton` can be faster than `attn_impl: flash` " + + "it uses more memory. When training larger models this can trigger " + + "alloc retries which hurts performance. If encountered, we recommend " + + "using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`." + ) + elif self.attn_impl == "torch": + self.attn_fn = scaled_multihead_dot_product_attention + if torch.cuda.is_available() and verbose: + warnings.warn( + "Using `attn_impl: torch`. If your model does not use `alibi` or " + + "`prefix_lm` we recommend using `attn_impl: flash` otherwise " + + "we recommend using `attn_impl: triton`." + ) + else: + raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.") + self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) + self.out_proj._is_residual = True + + def forward( + self, + x, + past_key_value=None, + attn_bias=None, + attention_mask=None, + is_causal=True, + needs_weights=False, + ): + qkv = self.Wqkv(x) + if self.clip_qkv: + qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) + (query, key, value) = qkv.chunk(3, dim=2) + key_padding_mask = attention_mask + if self.qk_ln: + dtype = query.dtype + query = self.q_ln(query).to(dtype) + key = self.k_ln(key).to(dtype) + (context, attn_weights, past_key_value) = self.attn_fn( + query, + key, + value, + self.n_heads, + past_key_value=past_key_value, + softmax_scale=self.softmax_scale, + attn_bias=attn_bias, + key_padding_mask=key_padding_mask, + is_causal=is_causal, + dropout_p=self.attn_dropout_p, + training=self.training, + needs_weights=needs_weights, + ) + return (self.out_proj(context), attn_weights, past_key_value) + + +class MultiQueryAttention(nn.Module): + """Multi-Query self attention. + + Using torch or triton attention implemetation enables user to also use + additive bias. + """ + + def __init__( + self, + d_model: int, + n_heads: int, + attn_impl: str = "triton", + clip_qkv: Optional[float] = None, + qk_ln: bool = False, + softmax_scale: Optional[float] = None, + attn_pdrop: float = 0.0, + low_precision_layernorm: bool = False, + verbose: int = 0, + device: Optional[str] = None, + ): + super().__init__() + self.attn_impl = attn_impl + self.clip_qkv = clip_qkv + self.qk_ln = qk_ln + self.d_model = d_model + self.n_heads = n_heads + self.head_dim = d_model // n_heads + self.softmax_scale = softmax_scale + if self.softmax_scale is None: + self.softmax_scale = 1 / math.sqrt(self.head_dim) + self.attn_dropout_p = attn_pdrop + self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device) + fuse_splits = (d_model, d_model + self.head_dim) + self.Wqkv._fused = (0, fuse_splits) + if self.qk_ln: + layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm + self.q_ln = layernorm_class(d_model, device=device) + self.k_ln = layernorm_class(self.head_dim, device=device) + if self.attn_impl == "flash": + self.attn_fn = flash_attn_fn + elif self.attn_impl == "triton": + self.attn_fn = triton_flash_attn_fn + if verbose: + warnings.warn( + "While `attn_impl: triton` can be faster than `attn_impl: flash` " + + "it uses more memory. When training larger models this can trigger " + + "alloc retries which hurts performance. If encountered, we recommend " + + "using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`." + ) + elif self.attn_impl == "torch": + self.attn_fn = scaled_multihead_dot_product_attention + if torch.cuda.is_available() and verbose: + warnings.warn( + "Using `attn_impl: torch`. If your model does not use `alibi` or " + + "`prefix_lm` we recommend using `attn_impl: flash` otherwise " + + "we recommend using `attn_impl: triton`." + ) + else: + raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.") + self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) + self.out_proj._is_residual = True + + def forward( + self, + x, + past_key_value=None, + attn_bias=None, + attention_mask=None, + is_causal=True, + needs_weights=False, + ): + qkv = self.Wqkv(x) + if self.clip_qkv: + qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) + (query, key, value) = qkv.split( + [self.d_model, self.head_dim, self.head_dim], dim=2 + ) + key_padding_mask = attention_mask + if self.qk_ln: + dtype = query.dtype + query = self.q_ln(query).to(dtype) + key = self.k_ln(key).to(dtype) + (context, attn_weights, past_key_value) = self.attn_fn( + query, + key, + value, + self.n_heads, + past_key_value=past_key_value, + softmax_scale=self.softmax_scale, + attn_bias=attn_bias, + key_padding_mask=key_padding_mask, + is_causal=is_causal, + dropout_p=self.attn_dropout_p, + training=self.training, + needs_weights=needs_weights, + multiquery=True, + ) + return (self.out_proj(context), attn_weights, past_key_value) + + +def attn_bias_shape( + attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id +): + if attn_impl == "flash": + return None + elif attn_impl in ["torch", "triton"]: + if alibi: + if (prefix_lm or not causal) or use_sequence_id: + return (1, n_heads, seq_len, seq_len) + return (1, n_heads, 1, seq_len) + elif prefix_lm or use_sequence_id: + return (1, 1, seq_len, seq_len) + return None + else: + raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.") + + +def build_attn_bias( + attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8 +): + if attn_impl == "flash": + return None + elif attn_impl in ["torch", "triton"]: + if alibi: + (device, dtype) = (attn_bias.device, attn_bias.dtype) + attn_bias = attn_bias.add( + build_alibi_bias( + n_heads, + seq_len, + full=not causal, + alibi_bias_max=alibi_bias_max, + device=device, + dtype=dtype, + ) + ) + return attn_bias + else: + raise ValueError(f"attn_impl={attn_impl!r} is an invalid setting.") + + +def gen_slopes(n_heads, alibi_bias_max=8, device=None): + _n_heads = 2 ** math.ceil(math.log2(n_heads)) + m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) + m = m.mul(alibi_bias_max / _n_heads) + slopes = 1.0 / torch.pow(2, m) + if _n_heads != n_heads: + slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] + return slopes.view(1, n_heads, 1, 1) + + +def build_alibi_bias( + n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None +): + alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view( + 1, 1, 1, seq_len + ) + if full: + alibi_bias = alibi_bias - torch.arange( + 1 - seq_len, 1, dtype=torch.int32, device=device + ).view(1, 1, seq_len, 1) + alibi_bias = alibi_bias.abs().mul(-1) + slopes = gen_slopes(n_heads, alibi_bias_max, device=device) + alibi_bias = alibi_bias * slopes + return alibi_bias.to(dtype=dtype) + + +ATTN_CLASS_REGISTRY = { + "multihead_attention": MultiheadAttention, + "multiquery_attention": MultiQueryAttention, +} diff --git a/lisa_on_cuda/llava/model/language_model/mpt/blocks.py b/lisa_on_cuda/llava/model/language_model/mpt/blocks.py new file mode 100755 index 0000000000000000000000000000000000000000..2f036432ecaf689a9292ef943c8fa8eb4dc9c357 --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/mpt/blocks.py @@ -0,0 +1,92 @@ +"""GPT Blocks used for the GPT Model.""" +from typing import Dict, Optional, Tuple + +import torch +import torch.nn as nn + +from .attention import ATTN_CLASS_REGISTRY +from .norm import NORM_CLASS_REGISTRY + + +class MPTMLP(nn.Module): + def __init__( + self, d_model: int, expansion_ratio: int, device: Optional[str] = None + ): + super().__init__() + self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device) + self.act = nn.GELU(approximate="none") + self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device) + self.down_proj._is_residual = True + + def forward(self, x): + return self.down_proj(self.act(self.up_proj(x))) + + +class MPTBlock(nn.Module): + def __init__( + self, + d_model: int, + n_heads: int, + expansion_ratio: int, + attn_config: Dict = { + "attn_type": "multihead_attention", + "attn_pdrop": 0.0, + "attn_impl": "triton", + "qk_ln": False, + "clip_qkv": None, + "softmax_scale": None, + "prefix_lm": False, + "attn_uses_sequence_id": False, + "alibi": False, + "alibi_bias_max": 8, + }, + resid_pdrop: float = 0.0, + norm_type: str = "low_precision_layernorm", + verbose: int = 0, + device: Optional[str] = None, + **kwargs + ): + del kwargs + super().__init__() + norm_class = NORM_CLASS_REGISTRY[norm_type.lower()] + attn_class = ATTN_CLASS_REGISTRY[attn_config["attn_type"]] + self.norm_1 = norm_class(d_model, device=device) + self.attn = attn_class( + attn_impl=attn_config["attn_impl"], + clip_qkv=attn_config["clip_qkv"], + qk_ln=attn_config["qk_ln"], + softmax_scale=attn_config["softmax_scale"], + attn_pdrop=attn_config["attn_pdrop"], + d_model=d_model, + n_heads=n_heads, + verbose=verbose, + device=device, + ) + self.norm_2 = norm_class(d_model, device=device) + self.ffn = MPTMLP( + d_model=d_model, expansion_ratio=expansion_ratio, device=device + ) + self.resid_attn_dropout = nn.Dropout(resid_pdrop) + self.resid_ffn_dropout = nn.Dropout(resid_pdrop) + + def forward( + self, + x: torch.Tensor, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attn_bias: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.ByteTensor] = None, + is_causal: bool = True, + ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]: + a = self.norm_1(x) + (b, attn_weights, past_key_value) = self.attn( + a, + past_key_value=past_key_value, + attn_bias=attn_bias, + attention_mask=attention_mask, + is_causal=is_causal, + ) + x = x + self.resid_attn_dropout(b) + m = self.norm_2(x) + n = self.ffn(m) + x = x + self.resid_ffn_dropout(n) + return (x, attn_weights, past_key_value) diff --git a/lisa_on_cuda/llava/model/language_model/mpt/configuration_mpt.py b/lisa_on_cuda/llava/model/language_model/mpt/configuration_mpt.py new file mode 100755 index 0000000000000000000000000000000000000000..06da3b8f05b347836a7b4bebede90bc02d2b9971 --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/mpt/configuration_mpt.py @@ -0,0 +1,199 @@ +"""A HuggingFace-style model configuration.""" +from typing import Dict, Optional, Union + +from transformers import PretrainedConfig + +attn_config_defaults: Dict = { + "attn_type": "multihead_attention", + "attn_pdrop": 0.0, + "attn_impl": "triton", + "qk_ln": False, + "clip_qkv": None, + "softmax_scale": None, + "prefix_lm": False, + "attn_uses_sequence_id": False, + "alibi": False, + "alibi_bias_max": 8, +} +init_config_defaults: Dict = { + "name": "kaiming_normal_", + "fan_mode": "fan_in", + "init_nonlinearity": "relu", + "init_div_is_residual": True, + "emb_init_std": None, + "emb_init_uniform_lim": None, + "init_std": None, + "init_gain": 0.0, +} + + +class MPTConfig(PretrainedConfig): + model_type = "mpt" + + def __init__( + self, + d_model: int = 2048, + n_heads: int = 16, + n_layers: int = 24, + expansion_ratio: int = 4, + max_seq_len: int = 2048, + vocab_size: int = 50368, + resid_pdrop: float = 0.0, + emb_pdrop: float = 0.0, + learned_pos_emb: bool = True, + attn_config: Dict = attn_config_defaults, + init_device: str = "cpu", + logit_scale: Optional[Union[float, str]] = None, + no_bias: bool = False, + verbose: int = 0, + embedding_fraction: float = 1.0, + norm_type: str = "low_precision_layernorm", + use_cache: bool = False, + init_config: Dict = init_config_defaults, + **kwargs, + ): + """The MPT configuration class. + + Args: + d_model (int): The size of the embedding dimension of the model. + n_heads (int): The number of attention heads. + n_layers (int): The number of layers in the model. + expansion_ratio (int): The ratio of the up/down scale in the MLP. + max_seq_len (int): The maximum sequence length of the model. + vocab_size (int): The size of the vocabulary. + resid_pdrop (float): The dropout probability applied to the attention output before combining with residual. + emb_pdrop (float): The dropout probability for the embedding layer. + learned_pos_emb (bool): Whether to use learned positional embeddings + attn_config (Dict): A dictionary used to configure the model's attention module: + attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention + attn_pdrop (float): The dropout probability for the attention layers. + attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'. + qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer. + clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to + this value. + softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None, + use the default scale of ``1/sqrt(d_keys)``. + prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an + extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix + can attend to one another bi-directionally. Tokens outside the prefix use causal attention. + attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id. + When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates + which sub-sequence each token belongs to. + Defaults to ``False`` meaning any provided `sequence_id` will be ignored. + alibi (bool): Whether to use the alibi bias instead of position embeddings. + alibi_bias_max (int): The maximum value of the alibi bias. + init_device (str): The device to use for parameter initialization. + logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value. + no_bias (bool): Whether to use bias in all layers. + verbose (int): The verbosity level. 0 is silent. + embedding_fraction (float): The fraction to scale the gradients of the embedding layer by. + norm_type (str): choose type of norm to use + multiquery_attention (bool): Whether to use multiquery attention implementation. + use_cache (bool): Whether or not the model should return the last key/values attentions + init_config (Dict): A dictionary used to configure the model initialization: + init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_', + 'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or + 'xavier_normal_'. These mimic the parameter initialization methods in PyTorch. + init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True. + emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer. + emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution + used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``. + init_std (float): The standard deviation of the normal distribution used to initialize the model, + if using the baseline_ parameter initialization scheme. + init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes. + fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes. + init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes. + --- + See llmfoundry.models.utils.param_init_fns.py for info on other param init config options + """ + self.d_model = d_model + self.n_heads = n_heads + self.n_layers = n_layers + self.expansion_ratio = expansion_ratio + self.max_seq_len = max_seq_len + self.vocab_size = vocab_size + self.resid_pdrop = resid_pdrop + self.emb_pdrop = emb_pdrop + self.learned_pos_emb = learned_pos_emb + self.attn_config = attn_config + self.init_device = init_device + self.logit_scale = logit_scale + self.no_bias = no_bias + self.verbose = verbose + self.embedding_fraction = embedding_fraction + self.norm_type = norm_type + self.use_cache = use_cache + self.init_config = init_config + if "name" in kwargs: + del kwargs["name"] + if "loss_fn" in kwargs: + del kwargs["loss_fn"] + super().__init__(**kwargs) + self._validate_config() + + def _set_config_defaults(self, config, config_defaults): + for k, v in config_defaults.items(): + if k not in config: + config[k] = v + return config + + def _validate_config(self): + self.attn_config = self._set_config_defaults( + self.attn_config, attn_config_defaults + ) + self.init_config = self._set_config_defaults( + self.init_config, init_config_defaults + ) + if self.d_model % self.n_heads != 0: + raise ValueError("d_model must be divisible by n_heads") + if any( + ( + prob < 0 or prob > 1 + for prob in [ + self.attn_config["attn_pdrop"], + self.resid_pdrop, + self.emb_pdrop, + ] + ) + ): + raise ValueError( + "self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1" + ) + if self.attn_config["attn_impl"] not in ["torch", "flash", "triton"]: + raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}") + if self.attn_config["prefix_lm"] and self.attn_config["attn_impl"] not in [ + "torch", + "triton", + ]: + raise NotImplementedError( + "prefix_lm only implemented with torch and triton attention." + ) + if self.attn_config["alibi"] and self.attn_config["attn_impl"] not in [ + "torch", + "triton", + ]: + raise NotImplementedError( + "alibi only implemented with torch and triton attention." + ) + if self.attn_config["attn_uses_sequence_id"] and self.attn_config[ + "attn_impl" + ] not in ["torch", "triton"]: + raise NotImplementedError( + "attn_uses_sequence_id only implemented with torch and triton attention." + ) + if self.embedding_fraction > 1 or self.embedding_fraction <= 0: + raise ValueError( + "model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!" + ) + if isinstance(self.logit_scale, str) and self.logit_scale != "inv_sqrt_d_model": + raise ValueError( + f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." + ) + if self.init_config.get("name", None) is None: + raise ValueError( + f"self.init_config={self.init_config!r} 'name' needs to be set." + ) + if not self.learned_pos_emb and (not self.attn_config["alibi"]): + raise ValueError( + f"Positional information must be provided to the model using either learned_pos_emb or alibi." + ) diff --git a/lisa_on_cuda/llava/model/language_model/mpt/custom_embedding.py b/lisa_on_cuda/llava/model/language_model/mpt/custom_embedding.py new file mode 100755 index 0000000000000000000000000000000000000000..83979e7e7d8552b32c97d3473d8fd4bb12bd45f3 --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/mpt/custom_embedding.py @@ -0,0 +1,11 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import Tensor + + +class SharedEmbedding(nn.Embedding): + def forward(self, input: Tensor, unembed: bool = False) -> Tensor: + if unembed: + return F.linear(input, self.weight) + return super().forward(input) diff --git a/lisa_on_cuda/llava/model/language_model/mpt/flash_attn_triton.py b/lisa_on_cuda/llava/model/language_model/mpt/flash_attn_triton.py new file mode 100755 index 0000000000000000000000000000000000000000..1247b53cdaee9c3f7e6b2e6df6610751158d7765 --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/mpt/flash_attn_triton.py @@ -0,0 +1,1087 @@ +""" +Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py +update imports to use 'triton_pre_mlir' + +*Experimental* implementation of FlashAttention in Triton. +Tested with triton==2.0.0.dev20221202. +Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions +other than 64: +https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207 +We'll update this implementation with the new Triton backend once this is fixed. + +We use the FlashAttention implementation from Phil Tillet a starting point. +https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py + +Changes: +- Implement both causal and non-causal attention. +- Implement both self-attention and cross-attention. +- Support arbitrary seqlens (not just multiples of 128), for both forward and backward. +- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward. +- Support attention bias. +- Speed up the forward pass a bit, and only store the LSE instead of m and l. +- Make the backward for d=128 much faster by reducing register spilling. +- Optionally parallelize the backward pass across seqlen_k, to deal with the case of +small batch size * nheads. + +Caution: +- This is an *experimental* implementation. The forward pass should be quite robust but +I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler). +- This implementation has only been tested on A100. +- If you plan to use headdim other than 64 and 128, you should test for race conditions +(due to the Triton compiler), as done in tests/test_flash_attn.py +"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions +for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident +that there are none left for other head dimensions. + +Differences between this Triton version and the CUDA version: +- Triton version doesn't support dropout. +- Triton forward is generally faster than CUDA forward, while Triton backward is +generally slower than CUDA backward. Overall Triton forward + backward is slightly slower +than CUDA forward + backward. +- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor). +- Triton version supports attention bias, while CUDA version doesn't. +""" +import math + +import torch +import triton_pre_mlir as triton +import triton_pre_mlir.language as tl + + +@triton.heuristics( + { + "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0, + "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0, + "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"], + } +) +@triton.jit +def _fwd_kernel( + Q, + K, + V, + Bias, + Out, + Lse, + TMP, + softmax_scale, + stride_qb, + stride_qh, + stride_qm, + stride_kb, + stride_kh, + stride_kn, + stride_vb, + stride_vh, + stride_vn, + stride_bb, + stride_bh, + stride_bm, + stride_ob, + stride_oh, + stride_om, + nheads, + seqlen_q, + seqlen_k, + seqlen_q_rounded, + headdim, + CACHE_KEY_SEQLEN_Q, + CACHE_KEY_SEQLEN_K, + BIAS_TYPE: tl.constexpr, + IS_CAUSAL: tl.constexpr, + BLOCK_HEADDIM: tl.constexpr, + EVEN_M: tl.constexpr, + EVEN_N: tl.constexpr, + EVEN_HEADDIM: tl.constexpr, + BLOCK_M: tl.constexpr, + BLOCK_N: tl.constexpr, +): + start_m = tl.program_id(0) + off_hb = tl.program_id(1) + off_b = off_hb // nheads + off_h = off_hb % nheads + offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) + offs_n = tl.arange(0, BLOCK_N) + offs_d = tl.arange(0, BLOCK_HEADDIM) + q_ptrs = ( + Q + + off_b * stride_qb + + off_h * stride_qh + + (offs_m[:, None] * stride_qm + offs_d[None, :]) + ) + k_ptrs = ( + K + + off_b * stride_kb + + off_h * stride_kh + + (offs_n[:, None] * stride_kn + offs_d[None, :]) + ) + v_ptrs = ( + V + + off_b * stride_vb + + off_h * stride_vh + + (offs_n[:, None] * stride_vn + offs_d[None, :]) + ) + if BIAS_TYPE == "vector": + b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n + elif BIAS_TYPE == "matrix": + b_ptrs = ( + Bias + + off_b * stride_bb + + off_h * stride_bh + + (offs_m[:, None] * stride_bm + offs_n[None, :]) + ) + t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m + lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") + m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") + acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) + if EVEN_M & EVEN_N: + if EVEN_HEADDIM: + q = tl.load(q_ptrs) + else: + q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0) + elif EVEN_HEADDIM: + q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0) + else: + q = tl.load( + q_ptrs, + mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), + other=0.0, + ) + end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k) + for start_n in range(0, end_n, BLOCK_N): + start_n = tl.multiple_of(start_n, BLOCK_N) + if EVEN_N & EVEN_M: + if EVEN_HEADDIM: + k = tl.load(k_ptrs + start_n * stride_kn) + else: + k = tl.load( + k_ptrs + start_n * stride_kn, + mask=offs_d[None, :] < headdim, + other=0.0, + ) + elif EVEN_HEADDIM: + k = tl.load( + k_ptrs + start_n * stride_kn, + mask=(start_n + offs_n)[:, None] < seqlen_k, + other=0.0, + ) + else: + k = tl.load( + k_ptrs + start_n * stride_kn, + mask=((start_n + offs_n)[:, None] < seqlen_k) + & (offs_d[None, :] < headdim), + other=0.0, + ) + qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) + qk += tl.dot(q, k, trans_b=True) + if not EVEN_N: + qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf")) + if IS_CAUSAL: + qk += tl.where( + offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf") + ) + if BIAS_TYPE != "none": + if BIAS_TYPE == "vector": + if EVEN_N: + bias = tl.load(b_ptrs + start_n).to(tl.float32) + else: + bias = tl.load( + b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0 + ).to(tl.float32) + bias = bias[None, :] + elif BIAS_TYPE == "matrix": + if EVEN_M & EVEN_N: + bias = tl.load(b_ptrs + start_n).to(tl.float32) + else: + bias = tl.load( + b_ptrs + start_n, + mask=(offs_m[:, None] < seqlen_q) + & ((start_n + offs_n)[None, :] < seqlen_k), + other=0.0, + ).to(tl.float32) + qk = qk * softmax_scale + bias + m_ij = tl.maximum(tl.max(qk, 1), lse_i) + p = tl.exp(qk - m_ij[:, None]) + else: + m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i) + p = tl.exp(qk * softmax_scale - m_ij[:, None]) + l_ij = tl.sum(p, 1) + acc_o_scale = tl.exp(m_i - m_ij) + tl.store(t_ptrs, acc_o_scale) + acc_o_scale = tl.load(t_ptrs) + acc_o = acc_o * acc_o_scale[:, None] + if EVEN_N & EVEN_M: + if EVEN_HEADDIM: + v = tl.load(v_ptrs + start_n * stride_vn) + else: + v = tl.load( + v_ptrs + start_n * stride_vn, + mask=offs_d[None, :] < headdim, + other=0.0, + ) + elif EVEN_HEADDIM: + v = tl.load( + v_ptrs + start_n * stride_vn, + mask=(start_n + offs_n)[:, None] < seqlen_k, + other=0.0, + ) + else: + v = tl.load( + v_ptrs + start_n * stride_vn, + mask=((start_n + offs_n)[:, None] < seqlen_k) + & (offs_d[None, :] < headdim), + other=0.0, + ) + p = p.to(v.dtype) + acc_o += tl.dot(p, v) + m_i = m_ij + l_i_new = tl.exp(lse_i - m_ij) + l_ij + lse_i = m_ij + tl.log(l_i_new) + o_scale = tl.exp(m_i - lse_i) + tl.store(t_ptrs, o_scale) + o_scale = tl.load(t_ptrs) + acc_o = acc_o * o_scale[:, None] + start_m = tl.program_id(0) + offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) + lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m + tl.store(lse_ptrs, lse_i) + offs_d = tl.arange(0, BLOCK_HEADDIM) + out_ptrs = ( + Out + + off_b * stride_ob + + off_h * stride_oh + + (offs_m[:, None] * stride_om + offs_d[None, :]) + ) + if EVEN_M: + if EVEN_HEADDIM: + tl.store(out_ptrs, acc_o) + else: + tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim) + elif EVEN_HEADDIM: + tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q) + else: + tl.store( + out_ptrs, + acc_o, + mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), + ) + + +@triton.jit +def _bwd_preprocess_do_o_dot( + Out, + DO, + Delta, + stride_ob, + stride_oh, + stride_om, + stride_dob, + stride_doh, + stride_dom, + nheads, + seqlen_q, + seqlen_q_rounded, + headdim, + BLOCK_M: tl.constexpr, + BLOCK_HEADDIM: tl.constexpr, +): + start_m = tl.program_id(0) + off_hb = tl.program_id(1) + off_b = off_hb // nheads + off_h = off_hb % nheads + offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) + offs_d = tl.arange(0, BLOCK_HEADDIM) + o = tl.load( + Out + + off_b * stride_ob + + off_h * stride_oh + + offs_m[:, None] * stride_om + + offs_d[None, :], + mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), + other=0.0, + ).to(tl.float32) + do = tl.load( + DO + + off_b * stride_dob + + off_h * stride_doh + + offs_m[:, None] * stride_dom + + offs_d[None, :], + mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), + other=0.0, + ).to(tl.float32) + delta = tl.sum(o * do, axis=1) + tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta) + + +@triton.jit +def _bwd_store_dk_dv( + dk_ptrs, + dv_ptrs, + dk, + dv, + offs_n, + offs_d, + seqlen_k, + headdim, + EVEN_M: tl.constexpr, + EVEN_N: tl.constexpr, + EVEN_HEADDIM: tl.constexpr, +): + if EVEN_N & EVEN_M: + if EVEN_HEADDIM: + tl.store(dv_ptrs, dv) + tl.store(dk_ptrs, dk) + else: + tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim) + tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim) + elif EVEN_HEADDIM: + tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k) + tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k) + else: + tl.store( + dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim) + ) + tl.store( + dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim) + ) + + +@triton.jit +def _bwd_kernel_one_col_block( + start_n, + Q, + K, + V, + Bias, + DO, + DQ, + DK, + DV, + LSE, + D, + softmax_scale, + stride_qm, + stride_kn, + stride_vn, + stride_bm, + stride_dom, + stride_dqm, + stride_dkn, + stride_dvn, + seqlen_q, + seqlen_k, + headdim, + ATOMIC_ADD: tl.constexpr, + BIAS_TYPE: tl.constexpr, + IS_CAUSAL: tl.constexpr, + BLOCK_HEADDIM: tl.constexpr, + EVEN_M: tl.constexpr, + EVEN_N: tl.constexpr, + EVEN_HEADDIM: tl.constexpr, + BLOCK_M: tl.constexpr, + BLOCK_N: tl.constexpr, +): + begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M + offs_qm = begin_m + tl.arange(0, BLOCK_M) + offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N) + offs_m = tl.arange(0, BLOCK_M) + offs_d = tl.arange(0, BLOCK_HEADDIM) + q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :]) + k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :]) + v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :]) + do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :]) + dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :]) + if BIAS_TYPE == "vector": + b_ptrs = Bias + offs_n + elif BIAS_TYPE == "matrix": + b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :]) + dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) + dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) + if begin_m >= seqlen_q: + dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) + dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) + _bwd_store_dk_dv( + dk_ptrs, + dv_ptrs, + dk, + dv, + offs_n, + offs_d, + seqlen_k, + headdim, + EVEN_M=EVEN_M, + EVEN_N=EVEN_N, + EVEN_HEADDIM=EVEN_HEADDIM, + ) + return + if EVEN_N & EVEN_M: + if EVEN_HEADDIM: + k = tl.load(k_ptrs) + v = tl.load(v_ptrs) + else: + k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0) + v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0) + elif EVEN_HEADDIM: + k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) + v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) + else: + k = tl.load( + k_ptrs, + mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), + other=0.0, + ) + v = tl.load( + v_ptrs, + mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), + other=0.0, + ) + num_block_m = tl.cdiv(seqlen_q, BLOCK_M) + for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M): + start_m = tl.multiple_of(start_m, BLOCK_M) + offs_m_curr = start_m + offs_m + if EVEN_M & EVEN_HEADDIM: + q = tl.load(q_ptrs) + elif EVEN_HEADDIM: + q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) + else: + q = tl.load( + q_ptrs, + mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), + other=0.0, + ) + qk = tl.dot(q, k, trans_b=True) + if not EVEN_N: + qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf")) + if IS_CAUSAL: + qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float("-inf")) + if BIAS_TYPE != "none": + tl.debug_barrier() + if BIAS_TYPE == "vector": + if EVEN_N: + bias = tl.load(b_ptrs).to(tl.float32) + else: + bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to( + tl.float32 + ) + bias = bias[None, :] + elif BIAS_TYPE == "matrix": + if EVEN_M & EVEN_N: + bias = tl.load(b_ptrs).to(tl.float32) + else: + bias = tl.load( + b_ptrs, + mask=(offs_m_curr[:, None] < seqlen_q) + & (offs_n[None, :] < seqlen_k), + other=0.0, + ).to(tl.float32) + qk = qk * softmax_scale + bias + if not EVEN_M & EVEN_HEADDIM: + tl.debug_barrier() + lse_i = tl.load(LSE + offs_m_curr) + if BIAS_TYPE == "none": + p = tl.exp(qk * softmax_scale - lse_i[:, None]) + else: + p = tl.exp(qk - lse_i[:, None]) + if EVEN_M & EVEN_HEADDIM: + do = tl.load(do_ptrs) + else: + do = tl.load( + do_ptrs, + mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), + other=0.0, + ) + dv += tl.dot(p.to(do.dtype), do, trans_a=True) + if not EVEN_M & EVEN_HEADDIM: + tl.debug_barrier() + dp = tl.dot(do, v, trans_b=True) + if not EVEN_HEADDIM: + tl.debug_barrier() + Di = tl.load(D + offs_m_curr) + ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype) + dk += tl.dot(ds, q, trans_a=True) + if not EVEN_M & EVEN_HEADDIM: + tl.debug_barrier() + if not ATOMIC_ADD: + if EVEN_M & EVEN_HEADDIM: + dq = tl.load(dq_ptrs, eviction_policy="evict_last") + dq += tl.dot(ds, k) + tl.store(dq_ptrs, dq, eviction_policy="evict_last") + elif EVEN_HEADDIM: + dq = tl.load( + dq_ptrs, + mask=offs_m_curr[:, None] < seqlen_q, + other=0.0, + eviction_policy="evict_last", + ) + dq += tl.dot(ds, k) + tl.store( + dq_ptrs, + dq, + mask=offs_m_curr[:, None] < seqlen_q, + eviction_policy="evict_last", + ) + else: + dq = tl.load( + dq_ptrs, + mask=(offs_m_curr[:, None] < seqlen_q) + & (offs_d[None, :] < headdim), + other=0.0, + eviction_policy="evict_last", + ) + dq += tl.dot(ds, k) + tl.store( + dq_ptrs, + dq, + mask=(offs_m_curr[:, None] < seqlen_q) + & (offs_d[None, :] < headdim), + eviction_policy="evict_last", + ) + else: + dq = tl.dot(ds, k) + if EVEN_M & EVEN_HEADDIM: + tl.atomic_add(dq_ptrs, dq) + elif EVEN_HEADDIM: + tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q) + else: + tl.atomic_add( + dq_ptrs, + dq, + mask=(offs_m_curr[:, None] < seqlen_q) + & (offs_d[None, :] < headdim), + ) + dq_ptrs += BLOCK_M * stride_dqm + q_ptrs += BLOCK_M * stride_qm + do_ptrs += BLOCK_M * stride_dom + if BIAS_TYPE == "matrix": + b_ptrs += BLOCK_M * stride_bm + dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) + dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) + _bwd_store_dk_dv( + dk_ptrs, + dv_ptrs, + dk, + dv, + offs_n, + offs_d, + seqlen_k, + headdim, + EVEN_M=EVEN_M, + EVEN_N=EVEN_N, + EVEN_HEADDIM=EVEN_HEADDIM, + ) + + +def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + + +@triton.autotune( + configs=[ + triton.Config( + {"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, + num_warps=8, + num_stages=1, + pre_hook=init_to_zero("DQ"), + ), + triton.Config( + {"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, + num_warps=8, + num_stages=1, + pre_hook=init_to_zero("DQ"), + ), + ], + key=[ + "CACHE_KEY_SEQLEN_Q", + "CACHE_KEY_SEQLEN_K", + "BIAS_TYPE", + "IS_CAUSAL", + "BLOCK_HEADDIM", + ], +) +@triton.heuristics( + { + "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0, + "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0, + "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"], + } +) +@triton.jit +def _bwd_kernel( + Q, + K, + V, + Bias, + DO, + DQ, + DK, + DV, + LSE, + D, + softmax_scale, + stride_qb, + stride_qh, + stride_qm, + stride_kb, + stride_kh, + stride_kn, + stride_vb, + stride_vh, + stride_vn, + stride_bb, + stride_bh, + stride_bm, + stride_dob, + stride_doh, + stride_dom, + stride_dqb, + stride_dqh, + stride_dqm, + stride_dkb, + stride_dkh, + stride_dkn, + stride_dvb, + stride_dvh, + stride_dvn, + nheads, + seqlen_q, + seqlen_k, + seqlen_q_rounded, + headdim, + CACHE_KEY_SEQLEN_Q, + CACHE_KEY_SEQLEN_K, + BIAS_TYPE: tl.constexpr, + IS_CAUSAL: tl.constexpr, + BLOCK_HEADDIM: tl.constexpr, + SEQUENCE_PARALLEL: tl.constexpr, + EVEN_M: tl.constexpr, + EVEN_N: tl.constexpr, + EVEN_HEADDIM: tl.constexpr, + BLOCK_M: tl.constexpr, + BLOCK_N: tl.constexpr, +): + off_hb = tl.program_id(1) + off_b = off_hb // nheads + off_h = off_hb % nheads + Q += off_b * stride_qb + off_h * stride_qh + K += off_b * stride_kb + off_h * stride_kh + V += off_b * stride_vb + off_h * stride_vh + DO += off_b * stride_dob + off_h * stride_doh + DQ += off_b * stride_dqb + off_h * stride_dqh + DK += off_b * stride_dkb + off_h * stride_dkh + DV += off_b * stride_dvb + off_h * stride_dvh + if BIAS_TYPE != "none": + Bias += off_b * stride_bb + off_h * stride_bh + D += off_hb * seqlen_q_rounded + LSE += off_hb * seqlen_q_rounded + if not SEQUENCE_PARALLEL: + num_block_n = tl.cdiv(seqlen_k, BLOCK_N) + for start_n in range(0, num_block_n): + _bwd_kernel_one_col_block( + start_n, + Q, + K, + V, + Bias, + DO, + DQ, + DK, + DV, + LSE, + D, + softmax_scale, + stride_qm, + stride_kn, + stride_vn, + stride_bm, + stride_dom, + stride_dqm, + stride_dkn, + stride_dvn, + seqlen_q, + seqlen_k, + headdim, + ATOMIC_ADD=False, + BIAS_TYPE=BIAS_TYPE, + IS_CAUSAL=IS_CAUSAL, + BLOCK_HEADDIM=BLOCK_HEADDIM, + EVEN_M=EVEN_M, + EVEN_N=EVEN_N, + EVEN_HEADDIM=EVEN_HEADDIM, + BLOCK_M=BLOCK_M, + BLOCK_N=BLOCK_N, + ) + else: + start_n = tl.program_id(0) + _bwd_kernel_one_col_block( + start_n, + Q, + K, + V, + Bias, + DO, + DQ, + DK, + DV, + LSE, + D, + softmax_scale, + stride_qm, + stride_kn, + stride_vn, + stride_bm, + stride_dom, + stride_dqm, + stride_dkn, + stride_dvn, + seqlen_q, + seqlen_k, + headdim, + ATOMIC_ADD=True, + BIAS_TYPE=BIAS_TYPE, + IS_CAUSAL=IS_CAUSAL, + BLOCK_HEADDIM=BLOCK_HEADDIM, + EVEN_M=EVEN_M, + EVEN_N=EVEN_N, + EVEN_HEADDIM=EVEN_HEADDIM, + BLOCK_M=BLOCK_M, + BLOCK_N=BLOCK_N, + ) + + +def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None): + (batch, seqlen_q, nheads, d) = q.shape + (_, seqlen_k, _, _) = k.shape + assert k.shape == (batch, seqlen_k, nheads, d) + assert v.shape == (batch, seqlen_k, nheads, d) + assert d <= 128, "FlashAttention only support head dimensions up to 128" + assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type" + assert q.dtype in [torch.float16, torch.bfloat16], "Only support fp16 and bf16" + assert q.is_cuda and k.is_cuda and v.is_cuda + softmax_scale = softmax_scale or 1.0 / math.sqrt(d) + has_bias = bias is not None + bias_type = "none" + if has_bias: + assert bias.dtype in [q.dtype, torch.float] + assert bias.is_cuda + assert bias.dim() == 4 + if bias.stride(-1) != 1: + bias = bias.contiguous() + if bias.shape[2:] == (1, seqlen_k): + bias_type = "vector" + elif bias.shape[2:] == (seqlen_q, seqlen_k): + bias_type = "matrix" + else: + raise RuntimeError( + "Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)" + ) + bias = bias.expand(batch, nheads, seqlen_q, seqlen_k) + bias_strides = ( + (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) + ) + seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 + lse = torch.empty( + (batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32 + ) + tmp = torch.empty( + (batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32 + ) + o = torch.empty_like(q) + BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) + BLOCK = 128 + num_warps = 4 if d <= 64 else 8 + grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads) + _fwd_kernel[grid]( + q, + k, + v, + bias, + o, + lse, + tmp, + softmax_scale, + q.stride(0), + q.stride(2), + q.stride(1), + k.stride(0), + k.stride(2), + k.stride(1), + v.stride(0), + v.stride(2), + v.stride(1), + *bias_strides, + o.stride(0), + o.stride(2), + o.stride(1), + nheads, + seqlen_q, + seqlen_k, + seqlen_q_rounded, + d, + seqlen_q // 32, + seqlen_k // 32, + bias_type, + causal, + BLOCK_HEADDIM, + BLOCK_M=BLOCK, + BLOCK_N=BLOCK, + num_warps=num_warps, + num_stages=1 + ) + return (o, lse, softmax_scale) + + +def _flash_attn_backward( + do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None +): + if do.stride(-1) != 1: + do = do.contiguous() + (batch, seqlen_q, nheads, d) = q.shape + (_, seqlen_k, _, _) = k.shape + assert d <= 128 + seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 + assert lse.shape == (batch, nheads, seqlen_q_rounded) + assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1 + assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1 + softmax_scale = softmax_scale or 1.0 / math.sqrt(d) + dq_accum = torch.empty_like(q, dtype=torch.float32) + delta = torch.empty_like(lse) + BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) + grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads) + _bwd_preprocess_do_o_dot[grid]( + o, + do, + delta, + o.stride(0), + o.stride(2), + o.stride(1), + do.stride(0), + do.stride(2), + do.stride(1), + nheads, + seqlen_q, + seqlen_q_rounded, + d, + BLOCK_M=128, + BLOCK_HEADDIM=BLOCK_HEADDIM, + ) + has_bias = bias is not None + bias_type = "none" + if has_bias: + assert bias.dtype in [q.dtype, torch.float] + assert bias.is_cuda + assert bias.dim() == 4 + assert bias.stride(-1) == 1 + if bias.shape[2:] == (1, seqlen_k): + bias_type = "vector" + elif bias.shape[2:] == (seqlen_q, seqlen_k): + bias_type = "matrix" + else: + raise RuntimeError( + "Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)" + ) + bias = bias.expand(batch, nheads, seqlen_q, seqlen_k) + bias_strides = ( + (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) + ) + grid = lambda META: ( + triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1, + batch * nheads, + ) + _bwd_kernel[grid]( + q, + k, + v, + bias, + do, + dq_accum, + dk, + dv, + lse, + delta, + softmax_scale, + q.stride(0), + q.stride(2), + q.stride(1), + k.stride(0), + k.stride(2), + k.stride(1), + v.stride(0), + v.stride(2), + v.stride(1), + *bias_strides, + do.stride(0), + do.stride(2), + do.stride(1), + dq_accum.stride(0), + dq_accum.stride(2), + dq_accum.stride(1), + dk.stride(0), + dk.stride(2), + dk.stride(1), + dv.stride(0), + dv.stride(2), + dv.stride(1), + nheads, + seqlen_q, + seqlen_k, + seqlen_q_rounded, + d, + seqlen_q // 32, + seqlen_k // 32, + bias_type, + causal, + BLOCK_HEADDIM + ) + dq.copy_(dq_accum) + + +class FlashAttnQKVPackedFunc(torch.autograd.Function): + @staticmethod + def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None): + """ + qkv: (batch, seqlen, 3, nheads, headdim) + bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen). + For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen). + ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen) + """ + if qkv.stride(-1) != 1: + qkv = qkv.contiguous() + (o, lse, ctx.softmax_scale) = _flash_attn_forward( + qkv[:, :, 0], + qkv[:, :, 1], + qkv[:, :, 2], + bias=bias, + causal=causal, + softmax_scale=softmax_scale, + ) + ctx.save_for_backward(qkv, o, lse, bias) + ctx.causal = causal + return o + + @staticmethod + def backward(ctx, do): + (qkv, o, lse, bias) = ctx.saved_tensors + assert not ctx.needs_input_grad[ + 1 + ], "FlashAttention does not support bias gradient yet" + with torch.inference_mode(): + dqkv = torch.empty_like(qkv) + _flash_attn_backward( + do, + qkv[:, :, 0], + qkv[:, :, 1], + qkv[:, :, 2], + o, + lse, + dqkv[:, :, 0], + dqkv[:, :, 1], + dqkv[:, :, 2], + bias=bias, + causal=ctx.causal, + softmax_scale=ctx.softmax_scale, + ) + return (dqkv, None, None, None) + + +flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply + + +class FlashAttnKVPackedFunc(torch.autograd.Function): + @staticmethod + def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None): + """ + q: (batch, seqlen_q, nheads, headdim) + kv: (batch, seqlen_k, 2, nheads, headdim) + bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). + For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). + ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) + """ + (q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]] + (o, lse, ctx.softmax_scale) = _flash_attn_forward( + q, + kv[:, :, 0], + kv[:, :, 1], + bias=bias, + causal=causal, + softmax_scale=softmax_scale, + ) + ctx.save_for_backward(q, kv, o, lse, bias) + ctx.causal = causal + return o + + @staticmethod + def backward(ctx, do): + (q, kv, o, lse, bias) = ctx.saved_tensors + if len(ctx.needs_input_grad) >= 3: + assert not ctx.needs_input_grad[ + 2 + ], "FlashAttention does not support bias gradient yet" + with torch.inference_mode(): + dq = torch.empty_like(q) + dkv = torch.empty_like(kv) + _flash_attn_backward( + do, + q, + kv[:, :, 0], + kv[:, :, 1], + o, + lse, + dq, + dkv[:, :, 0], + dkv[:, :, 1], + bias=bias, + causal=ctx.causal, + softmax_scale=ctx.softmax_scale, + ) + return (dq, dkv, None, None, None) + + +flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply + + +class FlashAttnFunc(torch.autograd.Function): + @staticmethod + def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None): + """ + q: (batch_size, seqlen_q, nheads, headdim) + k, v: (batch_size, seqlen_k, nheads, headdim) + bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). + For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). + ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) + """ + (q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]] + (o, lse, ctx.softmax_scale) = _flash_attn_forward( + q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale + ) + ctx.save_for_backward(q, k, v, o, lse, bias) + ctx.causal = causal + return o + + @staticmethod + def backward(ctx, do): + (q, k, v, o, lse, bias) = ctx.saved_tensors + assert not ctx.needs_input_grad[ + 3 + ], "FlashAttention does not support bias gradient yet" + with torch.inference_mode(): + dq = torch.empty_like(q) + dk = torch.empty_like(k) + dv = torch.empty_like(v) + _flash_attn_backward( + do, + q, + k, + v, + o, + lse, + dq, + dk, + dv, + bias=bias, + causal=ctx.causal, + softmax_scale=ctx.softmax_scale, + ) + return (dq, dk, dv, None, None, None) + + +flash_attn_func = FlashAttnFunc.apply diff --git a/lisa_on_cuda/llava/model/language_model/mpt/hf_prefixlm_converter.py b/lisa_on_cuda/llava/model/language_model/mpt/hf_prefixlm_converter.py new file mode 100755 index 0000000000000000000000000000000000000000..427d3878185431f3e657d1a93c5db5a55f04300f --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/mpt/hf_prefixlm_converter.py @@ -0,0 +1,750 @@ +"""Converts Huggingface Causal LM to Prefix LM. + +Conversion does lightweight surgery on a HuggingFace +Causal LM to convert it to a Prefix LM. + +Prefix LMs accepts a `bidirectional_mask` input in `forward` +and treat the input prompt as the prefix in `generate`. +""" +import math +import warnings +from types import MethodType +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +from transformers.models.bloom.modeling_bloom import ( + BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, + CausalLMOutputWithCrossAttentions, CrossEntropyLoss) +from transformers.models.bloom.modeling_bloom import \ + _expand_mask as _expand_mask_bloom +from transformers.models.bloom.modeling_bloom import \ + _make_causal_mask as _make_causal_mask_bloom +from transformers.models.bloom.modeling_bloom import logging +from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel +from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM +from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM +from transformers.models.gptj.modeling_gptj import GPTJForCausalLM +from transformers.models.opt.modeling_opt import OPTForCausalLM +from transformers.models.opt.modeling_opt import \ + _expand_mask as _expand_mask_opt +from transformers.models.opt.modeling_opt import \ + _make_causal_mask as _make_causal_mask_opt + +logger = logging.get_logger(__name__) +_SUPPORTED_GPT_MODELS = ( + GPT2LMHeadModel, + GPTJForCausalLM, + GPTNeoForCausalLM, + GPTNeoXForCausalLM, +) +CAUSAL_GPT_TYPES = Union[ + GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM +] + + +def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES: + """Converts a GPT-style Causal LM to a Prefix LM. + + Supported HuggingFace model classes: + - `GPT2LMHeadModel` + - `GPTNeoForCausalLM` + - `GPTNeoXForCausalLM` + - `GPTJForCausalLM` + + See `convert_hf_causal_lm_to_prefix_lm` for more details. + """ + if hasattr(model, "_prefix_lm_converted"): + return model + assert isinstance(model, _SUPPORTED_GPT_MODELS) + assert ( + model.config.add_cross_attention == False + ), "Only supports GPT-style decoder-only models" + + def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]: + """Helper that gets a list of the model's attention modules. + + Each module has a `bias` buffer used for causal masking. The Prefix LM + conversion adds logic to dynamically manipulate these biases to support + Prefix LM attention masking. + """ + attn_modules = [] + if isinstance(model, GPTNeoXForCausalLM): + blocks = model.gpt_neox.layers + else: + blocks = model.transformer.h + for block in blocks: + if isinstance(model, GPTNeoForCausalLM): + if block.attn.attention_type != "global": + continue + attn_module = block.attn.attention + elif isinstance(model, GPTNeoXForCausalLM): + attn_module = block.attention + else: + attn_module = block.attn + attn_modules.append(attn_module) + return attn_modules + + setattr(model, "_original_forward", getattr(model, "forward")) + setattr(model, "_original_generate", getattr(model, "generate")) + + def forward( + self: CAUSAL_GPT_TYPES, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + bidirectional_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + """Wraps original forward to enable PrefixLM attention.""" + + def call_og_forward(): + if isinstance(self, GPTNeoXForCausalLM): + return self._original_forward( + input_ids=input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + labels=labels, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + else: + return self._original_forward( + input_ids=input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + labels=labels, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if bidirectional_mask is None: + return call_og_forward() + assert isinstance(bidirectional_mask, torch.Tensor) + attn_modules = _get_attn_modules(model) + (b, s) = bidirectional_mask.shape + max_length = attn_modules[0].bias.shape[-1] + if s > max_length: + raise ValueError( + f"bidirectional_mask sequence length (={s}) exceeds the " + + f"max length allowed by the model ({max_length})." + ) + assert s <= max_length + if s < max_length: + pad = torch.zeros( + (int(b), int(max_length - s)), + dtype=bidirectional_mask.dtype, + device=bidirectional_mask.device, + ) + bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1) + bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1) + for attn_module in attn_modules: + attn_module.bias.data = torch.logical_or( + attn_module.bias.data, bidirectional + ) + output = call_og_forward() + for attn_module in attn_modules: + attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None] + return output + + def generate(self: CAUSAL_GPT_TYPES, *args: tuple, **kwargs: Dict[str, Any]): + """Wraps original generate to enable PrefixLM attention.""" + attn_modules = _get_attn_modules(model) + for attn_module in attn_modules: + attn_module.bias.data[:] = 1 + output = self._original_generate(*args, **kwargs) + for attn_module in attn_modules: + attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None] + return output + + setattr(model, "forward", MethodType(forward, model)) + setattr(model, "generate", MethodType(generate, model)) + setattr(model, "_prefix_lm_converted", True) + return model + + +def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM: + """Converts a BLOOM Causal LM to a Prefix LM. + + Supported HuggingFace model classes: + - `BloomForCausalLM` + + See `convert_hf_causal_lm_to_prefix_lm` for more details. + """ + if hasattr(model, "_prefix_lm_converted"): + return model + assert isinstance(model, BloomForCausalLM) + assert ( + model.config.add_cross_attention == False + ), "Only supports BLOOM decoder-only models" + + def _prepare_attn_mask( + self: BloomModel, + attention_mask: torch.Tensor, + bidirectional_mask: Optional[torch.Tensor], + input_shape: Tuple[int, int], + past_key_values_length: int, + ) -> torch.BoolTensor: + combined_attention_mask = None + device = attention_mask.device + (_, src_length) = input_shape + if src_length > 1: + combined_attention_mask = _make_causal_mask_bloom( + input_shape, + device=device, + past_key_values_length=past_key_values_length, + ) + if bidirectional_mask is not None: + assert attention_mask.shape == bidirectional_mask.shape + expanded_bidirectional_mask = _expand_mask_bloom( + bidirectional_mask, tgt_length=src_length + ) + combined_attention_mask = torch.logical_and( + combined_attention_mask, expanded_bidirectional_mask + ) + expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length) + combined_attention_mask = ( + expanded_attn_mask + if combined_attention_mask is None + else expanded_attn_mask | combined_attention_mask + ) + return combined_attention_mask + + def _build_alibi_tensor( + self: BloomModel, + batch_size: int, + query_length: int, + key_length: int, + dtype: torch.dtype, + device: torch.device, + ) -> torch.Tensor: + num_heads = self.config.n_head + closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) + base = torch.tensor( + 2 ** (-(2 ** (-(math.log2(closest_power_of_2) - 3)))), + device=device, + dtype=torch.float32, + ) + powers = torch.arange( + 1, 1 + closest_power_of_2, device=device, dtype=torch.int32 + ) + slopes = torch.pow(base, powers) + if closest_power_of_2 != num_heads: + extra_base = torch.tensor( + 2 ** (-(2 ** (-(math.log2(2 * closest_power_of_2) - 3)))), + device=device, + dtype=torch.float32, + ) + num_remaining_heads = min( + closest_power_of_2, num_heads - closest_power_of_2 + ) + extra_powers = torch.arange( + 1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32 + ) + slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) + qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1) + ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1) + diffs = qa - ka + key_length - query_length + diffs = -diffs.abs() + alibi = slopes.view(1, num_heads, 1, 1) * diffs.view( + 1, 1, query_length, key_length + ) + alibi = alibi.expand(batch_size, -1, -1, -1).reshape( + -1, query_length, key_length + ) + return alibi.to(dtype) + + KeyValueT = Tuple[torch.Tensor, torch.Tensor] + + def forward( + self: BloomModel, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[KeyValueT, ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + bidirectional_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **deprecated_arguments, + ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: + if deprecated_arguments.pop("position_ids", False) is not False: + warnings.warn( + "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. " + + "You can safely ignore passing `position_ids`.", + FutureWarning, + ) + if len(deprecated_arguments) > 0: + raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") + output_attentions = ( + output_attentions + if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states + if output_hidden_states is not None + else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + if input_ids is not None and inputs_embeds is not None: + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time" + ) + elif input_ids is not None: + (batch_size, seq_length) = input_ids.shape + elif inputs_embeds is not None: + (batch_size, seq_length, _) = inputs_embeds.shape + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + if past_key_values is None: + past_key_values = tuple([None] * len(self.h)) + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + hidden_states = self.word_embeddings_layernorm(inputs_embeds) + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + seq_length_with_past = seq_length + past_key_values_length = 0 + if past_key_values[0] is not None: + tmp = past_key_values[0][0] + past_key_values_length = tmp.shape[2] + seq_length_with_past = seq_length_with_past + past_key_values_length + if attention_mask is None: + attention_mask = torch.ones( + (batch_size, seq_length_with_past), device=hidden_states.device + ) + else: + attention_mask = attention_mask.to(hidden_states.device) + alibi = self._build_alibi_tensor( + batch_size=batch_size, + query_length=seq_length, + key_length=seq_length_with_past, + dtype=hidden_states.dtype, + device=hidden_states.device, + ) + causal_mask = self._prepare_attn_mask( + attention_mask, + bidirectional_mask, + input_shape=(batch_size, seq_length), + past_key_values_length=past_key_values_length, + ) + for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): + if output_hidden_states: + hst = (hidden_states,) + all_hidden_states = all_hidden_states + hst + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + def create_custom_forward(module): + def custom_forward(*inputs): + return module( + *inputs, + use_cache=use_cache, + output_attentions=output_attentions, + ) + + return custom_forward + + outputs = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + alibi, + causal_mask, + head_mask[i], + ) + else: + outputs = block( + hidden_states, + layer_past=layer_past, + attention_mask=causal_mask, + head_mask=head_mask[i], + use_cache=use_cache, + output_attentions=output_attentions, + alibi=alibi, + ) + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + if output_attentions: + oa = (outputs[2 if use_cache else 1],) + all_self_attentions = all_self_attentions + oa + hidden_states = self.ln_f(hidden_states) + if output_hidden_states: + hst = (hidden_states,) + all_hidden_states = all_hidden_states + hst + if not return_dict: + return tuple( + ( + v + for v in [ + hidden_states, + presents, + all_hidden_states, + all_self_attentions, + ] + if v is not None + ) + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + setattr( + model.transformer, + "_prepare_attn_mask", + MethodType(_prepare_attn_mask, model.transformer), + ) + setattr( + model.transformer, + "_build_alibi_tensor", + MethodType(_build_alibi_tensor, model.transformer), + ) + setattr(model.transformer, "forward", MethodType(forward, model.transformer)) + KeyValueT = Tuple[torch.Tensor, torch.Tensor] + + def forward( + self: BloomForCausalLM, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[KeyValueT, ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + bidirectional_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **deprecated_arguments, + ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: + """Replacement forward method for BloomCausalLM.""" + if deprecated_arguments.pop("position_ids", False) is not False: + warnings.warn( + "`position_ids` have no functionality in BLOOM and will be removed " + + "in v5.0.0. You can safely ignore passing `position_ids`.", + FutureWarning, + ) + if len(deprecated_arguments) > 0: + raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + bidirectional_mask=bidirectional_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + lm_logits = self.lm_head(hidden_states) + loss = None + if labels is not None: + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + (batch_size, seq_length, vocab_size) = shift_logits.shape + loss_fct = CrossEntropyLoss() + loss = loss_fct( + shift_logits.view(batch_size * seq_length, vocab_size), + shift_labels.view(batch_size * seq_length), + ) + if not return_dict: + output = (lm_logits,) + transformer_outputs[1:] + return (loss,) + output if loss is not None else output + return CausalLMOutputWithCrossAttentions( + loss=loss, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def prepare_inputs_for_generation( + self: BloomForCausalLM, + input_ids: torch.LongTensor, + past: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + **kwargs, + ) -> dict: + if past: + input_ids = input_ids[:, -1].unsqueeze(-1) + bidirectional_mask = None + if past[0][0].shape[0] == input_ids.shape[0]: + past = self._convert_to_bloom_cache(past) + else: + bidirectional_mask = torch.ones_like(input_ids) + return { + "input_ids": input_ids, + "past_key_values": past, + "use_cache": True, + "attention_mask": attention_mask, + "bidirectional_mask": bidirectional_mask, + } + + setattr(model, "forward", MethodType(forward, model)) + setattr( + model, + "prepare_inputs_for_generation", + MethodType(prepare_inputs_for_generation, model), + ) + setattr(model, "_prefix_lm_converted", True) + return model + + +def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM: + """Converts an OPT Causal LM to a Prefix LM. + + Supported HuggingFace model classes: + - `OPTForCausalLM` + + See `convert_hf_causal_lm_to_prefix_lm` for more details. + """ + if hasattr(model, "_prefix_lm_converted"): + return model + assert isinstance(model, OPTForCausalLM) + assert ( + model.config.add_cross_attention == False + ), "Only supports OPT decoder-only models" + setattr(model, "_original_forward", getattr(model, "forward")) + setattr(model, "_original_generate", getattr(model, "generate")) + model.model.decoder.bidirectional_mask = None + + def _prepare_decoder_attention_mask( + self, attention_mask, input_shape, inputs_embeds, past_key_values_length + ): + combined_attention_mask = None + if input_shape[-1] > 1: + if self.bidirectional_mask == "g": + (bsz, src_length) = input_shape + combined_attention_mask = torch.zeros( + (bsz, 1, src_length, src_length + past_key_values_length), + dtype=inputs_embeds.dtype, + device=inputs_embeds.device, + ) + else: + combined_attention_mask = _make_causal_mask_opt( + input_shape, + inputs_embeds.dtype, + past_key_values_length=past_key_values_length, + ).to(inputs_embeds.device) + if self.bidirectional_mask is not None: + assert attention_mask.shape == self.bidirectional_mask.shape + expanded_bidirectional_mask = _expand_mask_opt( + self.bidirectional_mask, + inputs_embeds.dtype, + tgt_len=input_shape[-1], + ).to(inputs_embeds.device) + combined_attention_mask = torch.maximum( + expanded_bidirectional_mask, combined_attention_mask + ) + if attention_mask is not None: + expanded_attn_mask = _expand_mask_opt( + attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ).to(inputs_embeds.device) + combined_attention_mask = ( + expanded_attn_mask + if combined_attention_mask is None + else expanded_attn_mask + combined_attention_mask + ) + return combined_attention_mask + + setattr( + model.model.decoder, + "_prepare_decoder_attention_mask", + MethodType(_prepare_decoder_attention_mask, model.model.decoder), + ) + + def forward( + self: OPTForCausalLM, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + bidirectional_mask: Optional[torch.ByteTensor] = None, + head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + def call_og_forward(): + return self._original_forward( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + labels=labels, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if bidirectional_mask is None: + return call_og_forward() + self.model.decoder.bidirectional_mask = bidirectional_mask + try: + outputs = call_og_forward() + except: + self.model.decoder.bidirectional_mask = None + raise + self.model.decoder.bidirectional_mask = None + return outputs + + def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]): + """Wraps original generate to enable PrefixLM-style attention.""" + self.model.decoder.bidirectional_mask = "g" + try: + output = self._original_generate(*args, **kwargs) + except: + self.model.decoder.bidirectional_mask = None + raise + self.model.decoder.bidirectional_mask = None + return output + + setattr(model, "forward", MethodType(forward, model)) + setattr(model, "generate", MethodType(generate, model)) + setattr(model, "_prefix_lm_converted", True) + return model + + +_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM) +CAUSAL_LM_TYPES = Union[ + GPT2LMHeadModel, + GPTJForCausalLM, + GPTNeoForCausalLM, + GPTNeoXForCausalLM, + BloomForCausalLM, + OPTForCausalLM, +] + + +def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES: + """Converts a HuggingFace Causal LM to a Prefix LM. + + Supported HuggingFace model classes: + - `GPT2LMHeadModel` + - `GPTNeoForCausalLM` + - `GPTNeoXForCausalLM` + - `GPTJForCausalLM` + - `BloomForCausalLM` + - `OPTForCausalLM` + + Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the + `generate` method and/or select underlying methods depending on the model class. + + These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask". + + Notes on training: + To actually train the converted model as a Prefix LM, training batches will need to indicate + the prefix/target structure by including `bidirectional_mask` as part of the batch inputs. + + **This is not a standard input and requires custom layers either within or after your dataloader.** + + In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels` + such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`. + That is, the prefix portion of the sequence should not generate any loss. Loss should only be + generated by the target portion of the sequence. + + Notes on `GPTNeoForCausalLM`: + To simplify the implementation, "global" and "local" attention layers are handled differently. + For "global" layers, we handle conversion as described above. For "local" layers, which use a + causal attention mask within a restricted local window, we do not alter the masking. + + Notes on `forward` method conversion: + After conversion, the `forward` method will handle a new input, `bidirectional_mask`, + which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions + belonging to the prefix (prefix tokens can attend to one another bidirectionally), and + 0 indicates token positions belonging to the target. + + The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing + causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset + the causal masks before returning the result. + + Notes on `generate` method conversion: + After conversion, the `generate` method will have the same signature but will internally + convert all causal masks to be purely bidirectional, call the original `generate` method, and + (where appropriate) reset the causal masks before returning the result. + + This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token + "prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates + each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one + another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and + previously-generated tokens (also as expected in a Prefix LM). + + To preserve the API, the original methods are renamed to `_original_forward` and + `_original_generate`, and replaced with new `forward` and `generate` methods that wrap + them, respectively. Although implementation details vary by model class. + """ + if isinstance(model, _SUPPORTED_GPT_MODELS): + return _convert_gpt_causal_lm_to_prefix_lm(model) + elif isinstance(model, BloomForCausalLM): + return _convert_bloom_causal_lm_to_prefix_lm(model) + elif isinstance(model, OPTForCausalLM): + return _convert_opt_causal_lm_to_prefix_lm(model) + else: + raise TypeError( + f"Cannot convert model to Prefix LM. " + + f"Model does not belong to set of supported HF models:" + + f"\n{_SUPPORTED_HF_MODELS}" + ) + + +def add_bidirectional_mask_if_missing(batch: Dict[str, Any]): + """Attempts to add bidirectional_mask to batch if missing. + + Raises: + KeyError if bidirectional_mask is missing and can't be inferred + """ + if "bidirectional_mask" not in batch: + if batch.get("mode", None) == "icl_task": + batch["bidirectional_mask"] = batch["attention_mask"].clone() + for i, continuation_indices in enumerate(batch["continuation_indices"]): + batch["bidirectional_mask"][i, continuation_indices] = 0 + elif "labels" in batch and "attention_mask" in batch: + batch["bidirectional_mask"] = torch.logical_and( + torch.eq(batch["attention_mask"], 1), torch.eq(batch["labels"], -100) + ).type_as(batch["attention_mask"]) + else: + raise KeyError( + "No bidirectional_mask in batch and not sure how to construct one." + ) diff --git a/lisa_on_cuda/llava/model/language_model/mpt/meta_init_context.py b/lisa_on_cuda/llava/model/language_model/mpt/meta_init_context.py new file mode 100755 index 0000000000000000000000000000000000000000..208ab255cedb65e5c444b1c5fa5abf72cbdb1512 --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/mpt/meta_init_context.py @@ -0,0 +1,111 @@ +from contextlib import contextmanager + +import torch +import torch.nn as nn + + +@contextmanager +def init_empty_weights(include_buffers: bool = False): + """Meta initialization context manager. + + A context manager under which models are initialized with all parameters + on the meta device, therefore creating an empty model. Useful when just + initializing the model would blow the available RAM. + + Args: + include_buffers (`bool`, *optional*, defaults to `False`): Whether or + not to also put all buffers on the meta device while initializing. + + Example: + ```python + import torch.nn as nn + + # Initialize a model with 100 billions parameters in no time and without using any RAM. + with init_empty_weights(): + tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)]) + ``` + + + + Any model created under this context manager has no weights. As such you can't do something like + `model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`]. + + + """ + with init_on_device(torch.device("meta"), include_buffers=include_buffers) as f: + yield f + + +@contextmanager +def init_on_device(device: torch.device, include_buffers: bool = False): + """Device initialization context manager. + + A context manager under which models are initialized with all parameters + on the specified device. + + Args: + device (`torch.device`): Device to initialize all parameters on. + include_buffers (`bool`, *optional*, defaults to `False`): Whether or + not to also put all buffers on the meta device while initializing. + + Example: + ```python + import torch.nn as nn + + with init_on_device(device=torch.device("cuda")): + tst = nn.Liner(100, 100) # on `cuda` device + ``` + """ + old_register_parameter = nn.Module.register_parameter + if include_buffers: + old_register_buffer = nn.Module.register_buffer + + def register_empty_parameter(module, name, param): + old_register_parameter(module, name, param) + if param is not None: + param_cls = type(module._parameters[name]) + kwargs = module._parameters[name].__dict__ + module._parameters[name] = param_cls( + module._parameters[name].to(device), **kwargs + ) + + def register_empty_buffer(module, name, buffer): + old_register_buffer(module, name, buffer) + if buffer is not None: + module._buffers[name] = module._buffers[name].to(device) + + if include_buffers: + tensor_constructors_to_patch = { + torch_function_name: getattr(torch, torch_function_name) + for torch_function_name in ["empty", "zeros", "ones", "full"] + } + else: + tensor_constructors_to_patch = {} + + def patch_tensor_constructor(fn): + def wrapper(*args, **kwargs): + kwargs["device"] = device + return fn(*args, **kwargs) + + return wrapper + + try: + nn.Module.register_parameter = register_empty_parameter + if include_buffers: + nn.Module.register_buffer = register_empty_buffer + for torch_function_name in tensor_constructors_to_patch.keys(): + setattr( + torch, + torch_function_name, + patch_tensor_constructor(getattr(torch, torch_function_name)), + ) + yield + finally: + nn.Module.register_parameter = old_register_parameter + if include_buffers: + nn.Module.register_buffer = old_register_buffer + for ( + torch_function_name, + old_torch_function, + ) in tensor_constructors_to_patch.items(): + setattr(torch, torch_function_name, old_torch_function) diff --git a/lisa_on_cuda/llava/model/language_model/mpt/modeling_mpt.py b/lisa_on_cuda/llava/model/language_model/mpt/modeling_mpt.py new file mode 100755 index 0000000000000000000000000000000000000000..98ae82229180862e6b6c648baecc603e1a0381e3 --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/mpt/modeling_mpt.py @@ -0,0 +1,538 @@ +"""A simple, flexible implementation of a GPT model. + +Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py +""" +import math +import warnings +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from transformers import (PreTrainedModel, PreTrainedTokenizer, + PreTrainedTokenizerFast) +from transformers.modeling_outputs import (BaseModelOutputWithPast, + CausalLMOutputWithPast) + +from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising +from .attention import attn_bias_shape, build_attn_bias +from .blocks import MPTBlock +from .configuration_mpt import MPTConfig +from .custom_embedding import SharedEmbedding +from .hf_prefixlm_converter import (add_bidirectional_mask_if_missing, + convert_hf_causal_lm_to_prefix_lm) +from .meta_init_context import init_empty_weights +from .norm import NORM_CLASS_REGISTRY +from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_ + +try: + from .flash_attn_triton import flash_attn_func +except: + pass +Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] + + +class MPTPreTrainedModel(PreTrainedModel): + config_class = MPTConfig + base_model_prefix = "model" + _no_split_modules = ["MPTBlock"] + + +class MPTModel(MPTPreTrainedModel): + def __init__(self, config: MPTConfig): + config._validate_config() + super().__init__(config) + self.attn_impl = config.attn_config["attn_impl"] + self.prefix_lm = config.attn_config["prefix_lm"] + self.attn_uses_sequence_id = config.attn_config["attn_uses_sequence_id"] + self.alibi = config.attn_config["alibi"] + self.alibi_bias_max = config.attn_config["alibi_bias_max"] + if config.init_device == "mixed": + if dist.get_local_rank() == 0: + config.init_device = "cpu" + else: + config.init_device = "meta" + if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): + norm_options = " | ".join(NORM_CLASS_REGISTRY.keys()) + raise NotImplementedError( + f"Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options})." + ) + norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] + self.embedding_fraction = config.embedding_fraction + self.wte = SharedEmbedding( + config.vocab_size, config.d_model, device=config.init_device + ) + if not self.alibi: + self.wpe = torch.nn.Embedding( + config.max_seq_len, config.d_model, device=config.init_device + ) + self.emb_drop = nn.Dropout(config.emb_pdrop) + self.blocks = nn.ModuleList( + [ + MPTBlock(device=config.init_device, **config.to_dict()) + for _ in range(config.n_layers) + ] + ) + self.norm_f = norm_class(config.d_model, device=config.init_device) + if config.init_device != "meta": + print( + f'You are using config.init_device={config.init_device!r}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.' + ) + self.apply(self.param_init_fn) + self.is_causal = not self.prefix_lm + self._attn_bias_initialized = False + self.attn_bias = None + self.attn_bias_shape = attn_bias_shape( + self.attn_impl, + config.n_heads, + config.max_seq_len, + self.alibi, + prefix_lm=self.prefix_lm, + causal=self.is_causal, + use_sequence_id=self.attn_uses_sequence_id, + ) + if config.no_bias: + for module in self.modules(): + if hasattr(module, "bias") and isinstance(module.bias, nn.Parameter): + if config.verbose: + warnings.warn(f"Removing bias ({module.bias}) from {module}.") + module.register_parameter("bias", None) + if config.verbose and config.verbose > 2: + print(self) + if "verbose" not in self.config.init_config: + self.config.init_config["verbose"] = self.config.verbose + if self.config.init_config["verbose"] > 1: + init_fn_name = self.config.init_config["name"] + warnings.warn(f"Using {init_fn_name} initialization.") + self.gradient_checkpointing = False + + def get_input_embeddings(self): + return self.wte + + def set_input_embeddings(self, value): + self.wte = value + + @torch.no_grad() + def _attn_bias( + self, + device, + dtype, + attention_mask: Optional[torch.ByteTensor] = None, + prefix_mask: Optional[torch.ByteTensor] = None, + sequence_id: Optional[torch.LongTensor] = None, + ): + if not self._attn_bias_initialized: + if self.attn_bias_shape: + self.attn_bias = torch.zeros( + self.attn_bias_shape, device=device, dtype=dtype + ) + self.attn_bias = build_attn_bias( + self.attn_impl, + self.attn_bias, + self.config.n_heads, + self.config.max_seq_len, + causal=self.is_causal, + alibi=self.alibi, + alibi_bias_max=self.alibi_bias_max, + ) + self._attn_bias_initialized = True + if self.attn_impl == "flash": + return (self.attn_bias, attention_mask) + if self.attn_bias is not None: + self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) + attn_bias = self.attn_bias + if self.prefix_lm: + assert isinstance(attn_bias, torch.Tensor) + assert isinstance(prefix_mask, torch.Tensor) + attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) + if self.attn_uses_sequence_id and sequence_id is not None: + assert isinstance(attn_bias, torch.Tensor) + attn_bias = self._apply_sequence_id(attn_bias, sequence_id) + if attention_mask is not None: + s_k = attention_mask.shape[-1] + if attn_bias is None: + attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) + else: + _s_k = max(0, attn_bias.size(-1) - s_k) + attn_bias = attn_bias[:, :, :, _s_k:] + if prefix_mask is not None and attention_mask.shape != prefix_mask.shape: + raise ValueError( + f"attention_mask shape={attention_mask.shape} " + + f"and prefix_mask shape={prefix_mask.shape} are not equal." + ) + min_val = torch.finfo(attn_bias.dtype).min + attn_bias = attn_bias.masked_fill( + ~attention_mask.view(-1, 1, 1, s_k), min_val + ) + return (attn_bias, None) + + def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor): + (s_k, s_q) = attn_bias.shape[-2:] + if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len: + raise ValueError( + "attn_bias does not match the expected shape. " + + f"The last two dimensions should both be {self.config.max_length} " + + f"but are {s_k} and {s_q}." + ) + seq_len = prefix_mask.shape[-1] + if seq_len > self.config.max_seq_len: + raise ValueError( + f"prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}" + ) + attn_bias = attn_bias[..., :seq_len, :seq_len] + causal = torch.tril( + torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device) + ).view(1, 1, seq_len, seq_len) + prefix = prefix_mask.view(-1, 1, 1, seq_len) + cannot_attend = ~torch.logical_or(causal, prefix.bool()) + min_val = torch.finfo(attn_bias.dtype).min + attn_bias = attn_bias.masked_fill(cannot_attend, min_val) + return attn_bias + + def _apply_sequence_id( + self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor + ): + seq_len = sequence_id.shape[-1] + if seq_len > self.config.max_seq_len: + raise ValueError( + f"sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}" + ) + attn_bias = attn_bias[..., :seq_len, :seq_len] + cannot_attend = torch.logical_not( + torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len)) + ).unsqueeze(1) + min_val = torch.finfo(attn_bias.dtype).min + attn_bias = attn_bias.masked_fill(cannot_attend, min_val) + return attn_bias + + def forward( + self, + input_ids: torch.LongTensor, + past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, + attention_mask: Optional[torch.ByteTensor] = None, + prefix_mask: Optional[torch.ByteTensor] = None, + sequence_id: Optional[torch.LongTensor] = None, + return_dict: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + use_cache: Optional[bool] = None, + inputs_embeds: Optional[torch.Tensor] = None, + ): + return_dict = ( + return_dict if return_dict is not None else self.config.return_dict + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + if attention_mask is not None: + attention_mask = attention_mask.bool() + if prefix_mask is not None: + prefix_mask = prefix_mask.bool() + if not return_dict: + raise NotImplementedError( + "return_dict False is not implemented yet for MPT" + ) + if output_attentions: + if self.attn_impl != "torch": + raise NotImplementedError( + "output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`." + ) + if ( + attention_mask is not None + and attention_mask[:, 0].sum() != attention_mask.shape[0] + and self.training + ): + raise NotImplementedError( + "MPT does not support training with left padding." + ) + if self.prefix_lm and prefix_mask is None: + raise ValueError( + "prefix_mask is a required argument when MPT is configured with prefix_lm=True." + ) + if self.training: + if self.attn_uses_sequence_id and sequence_id is None: + raise ValueError( + "sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True " + + "and the model is in train mode." + ) + elif self.attn_uses_sequence_id is False and sequence_id is not None: + warnings.warn( + "MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. " + + "This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True." + ) + if input_ids is not None: + S = input_ids.size(1) + assert ( + S <= self.config.max_seq_len + ), f"Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}" + tok_emb = self.wte(input_ids) + else: + assert inputs_embeds is not None + assert ( + self.alibi + ), "inputs_embeds is not implemented for MPT unless for alibi." + S = inputs_embeds.size(1) + tok_emb = inputs_embeds + if self.alibi: + x = tok_emb + else: + past_position = 0 + if past_key_values is not None: + if len(past_key_values) != self.config.n_layers: + raise ValueError( + f"past_key_values must provide a past_key_value for each attention " + + f"layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r})." + ) + past_position = past_key_values[0][0].size(1) + if self.attn_impl == "torch": + past_position = past_key_values[0][0].size(3) + if S + past_position > self.config.max_seq_len: + raise ValueError( + f"Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}." + ) + pos = torch.arange( + past_position, + S + past_position, + dtype=torch.long, + device=input_ids.device, + ).unsqueeze(0) + if attention_mask is not None: + pos = torch.clamp( + pos + - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[ + :, past_position: + ], + min=0, + ) + pos_emb = self.wpe(pos) + x = tok_emb + pos_emb + if self.embedding_fraction == 1: + x = self.emb_drop(x) + else: + x_shrunk = x * self.embedding_fraction + x.detach() * ( + 1 - self.embedding_fraction + ) + assert isinstance(self.emb_drop, nn.Module) + x = self.emb_drop(x_shrunk) + (attn_bias, attention_mask) = self._attn_bias( + device=x.device, + dtype=torch.float32, + attention_mask=attention_mask, + prefix_mask=prefix_mask, + sequence_id=sequence_id, + ) + if use_cache and past_key_values is None: + past_key_values = [() for _ in range(self.config.n_layers)] + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + for b_idx, block in enumerate(self.blocks): + if output_hidden_states: + assert all_hidden_states is not None + all_hidden_states = all_hidden_states + (x,) + past_key_value = ( + past_key_values[b_idx] if past_key_values is not None else None + ) + if self.gradient_checkpointing and self.training: + (x, attn_weights, past_key_value) = torch.utils.checkpoint.checkpoint( + block, x, past_key_value, attn_bias, attention_mask, self.is_causal + ) + else: + (x, attn_weights, past_key_value) = block( + x, + past_key_value=past_key_value, + attn_bias=attn_bias, + attention_mask=attention_mask, + is_causal=self.is_causal, + ) + if past_key_values is not None: + past_key_values[b_idx] = past_key_value + if output_attentions: + assert all_self_attns is not None + all_self_attns = all_self_attns + (attn_weights,) + x = self.norm_f(x) + if output_hidden_states: + assert all_hidden_states is not None + all_hidden_states = all_hidden_states + (x,) + return BaseModelOutputWithPast( + last_hidden_state=x, + past_key_values=past_key_values, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + def param_init_fn(self, module): + init_fn_name = self.config.init_config["name"] + MODEL_INIT_REGISTRY[init_fn_name]( + module=module, + n_layers=self.config.n_layers, + d_model=self.config.d_model, + **self.config.init_config, + ) + + def fsdp_wrap_fn(self, module): + return isinstance(module, MPTBlock) + + def activation_checkpointing_fn(self, module): + return isinstance(module, MPTBlock) + + +class MPTForCausalLM(MPTPreTrainedModel): + def __init__(self, config: MPTConfig): + super().__init__(config) + if not config.tie_word_embeddings: + raise ValueError("MPTForCausalLM only supports tied word embeddings") + print(f"Instantiating an MPTForCausalLM model from {__file__}") + self.transformer = MPTModel(config) + for child in self.transformer.children(): + if isinstance(child, torch.nn.ModuleList): + continue + if isinstance(child, torch.nn.Module): + child._fsdp_wrap = True + self.logit_scale = None + if config.logit_scale is not None: + logit_scale = config.logit_scale + if isinstance(logit_scale, str): + if logit_scale == "inv_sqrt_d_model": + logit_scale = 1 / math.sqrt(config.d_model) + else: + raise ValueError( + f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." + ) + self.logit_scale = logit_scale + + def get_input_embeddings(self): + return self.transformer.wte + + def set_input_embeddings(self, value): + self.transformer.wte = value + + def get_output_embeddings(self): + return self.transformer.wte + + def set_output_embeddings(self, new_embeddings): + self.transformer.wte = new_embeddings + + def set_decoder(self, decoder): + self.transformer = decoder + + def get_decoder(self): + return self.transformer + + def forward( + self, + input_ids: torch.LongTensor, + past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, + attention_mask: Optional[torch.ByteTensor] = None, + prefix_mask: Optional[torch.ByteTensor] = None, + sequence_id: Optional[torch.LongTensor] = None, + labels: Optional[torch.LongTensor] = None, + return_dict: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + use_cache: Optional[bool] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + ): + return_dict = ( + return_dict if return_dict is not None else self.config.return_dict + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + if inputs_embeds is not None: + raise NotImplementedError( + "inputs_embeds has to be None (for hf/peft support)." + ) + outputs = self.transformer( + input_ids=input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + prefix_mask=prefix_mask, + sequence_id=sequence_id, + return_dict=return_dict, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + use_cache=use_cache, + ) + logits = self.transformer.wte( + outputs.last_hidden_state.to(self.transformer.wte.weight.device), True + ) + if self.logit_scale is not None: + if self.logit_scale == 0: + warnings.warn( + f"Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs." + ) + logits *= self.logit_scale + loss = None + if labels is not None: + labels = torch.roll(labels, shifts=-1) + labels[:, -1] = -100 + loss = F.cross_entropy( + logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1) + ) + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def param_init_fn(self, module): + init_fn_name = self.config.init_config["name"] + MODEL_INIT_REGISTRY[init_fn_name]( + module=module, + n_layers=self.config.n_layers, + d_model=self.config.d_model, + **self.config.init_config, + ) + + def fsdp_wrap_fn(self, module): + return isinstance(module, MPTBlock) + + def activation_checkpointing_fn(self, module): + return isinstance(module, MPTBlock) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs + ): + if inputs_embeds is not None: + raise NotImplementedError("inputs_embeds is not implemented for MPT yet") + attention_mask = kwargs["attention_mask"].bool() + if attention_mask[:, -1].sum() != attention_mask.shape[0]: + raise NotImplementedError( + "MPT does not support generation with right padding." + ) + if self.transformer.attn_uses_sequence_id and self.training: + sequence_id = torch.zeros_like(input_ids[:1]) + else: + sequence_id = None + if past_key_values is not None: + input_ids = input_ids[:, -1].unsqueeze(-1) + if self.transformer.prefix_lm: + prefix_mask = torch.ones_like(attention_mask) + if kwargs.get("use_cache") == False: + raise NotImplementedError( + "MPT with prefix_lm=True does not support use_cache=False." + ) + else: + prefix_mask = None + return { + "input_ids": input_ids, + "attention_mask": attention_mask, + "prefix_mask": prefix_mask, + "sequence_id": sequence_id, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache", True), + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + """Used by HuggingFace generate when using beam search with kv-caching. + + See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 + for an example in transformers. + """ + reordered_past = [] + for layer_past in past_key_values: + reordered_past += [ + tuple( + (past_state.index_select(0, beam_idx) for past_state in layer_past) + ) + ] + return reordered_past diff --git a/lisa_on_cuda/llava/model/language_model/mpt/norm.py b/lisa_on_cuda/llava/model/language_model/mpt/norm.py new file mode 100755 index 0000000000000000000000000000000000000000..85291eadbbfc407ff43f88d699bf4853ca0ff2cf --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/mpt/norm.py @@ -0,0 +1,106 @@ +import torch + + +def _cast_if_autocast_enabled(tensor): + if torch.is_autocast_enabled(): + if tensor.device.type == "cuda": + dtype = torch.get_autocast_gpu_dtype() + elif tensor.device.type == "cpu": + dtype = torch.get_autocast_cpu_dtype() + else: + raise NotImplementedError() + return tensor.to(dtype=dtype) + return tensor + + +class LPLayerNorm(torch.nn.LayerNorm): + def __init__( + self, + normalized_shape, + eps=1e-05, + elementwise_affine=True, + device=None, + dtype=None, + ): + super().__init__( + normalized_shape=normalized_shape, + eps=eps, + elementwise_affine=elementwise_affine, + device=device, + dtype=dtype, + ) + + def forward(self, x): + module_device = x.device + downcast_x = _cast_if_autocast_enabled(x) + downcast_weight = ( + _cast_if_autocast_enabled(self.weight) + if self.weight is not None + else self.weight + ) + downcast_bias = ( + _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias + ) + with torch.autocast(enabled=False, device_type=module_device.type): + return torch.nn.functional.layer_norm( + downcast_x, + self.normalized_shape, + downcast_weight, + downcast_bias, + self.eps, + ) + + +def rms_norm(x, weight=None, eps=1e-05): + output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) + if weight is not None: + return output * weight + return output + + +class RMSNorm(torch.nn.Module): + def __init__( + self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None + ): + super().__init__() + self.eps = eps + if weight: + self.weight = torch.nn.Parameter( + torch.ones(normalized_shape, dtype=dtype, device=device) + ) + else: + self.register_parameter("weight", None) + + def forward(self, x): + return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype) + + +class LPRMSNorm(RMSNorm): + def __init__( + self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None + ): + super().__init__( + normalized_shape=normalized_shape, + eps=eps, + weight=weight, + dtype=dtype, + device=device, + ) + + def forward(self, x): + downcast_x = _cast_if_autocast_enabled(x) + downcast_weight = ( + _cast_if_autocast_enabled(self.weight) + if self.weight is not None + else self.weight + ) + with torch.autocast(enabled=False, device_type=x.device.type): + return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype) + + +NORM_CLASS_REGISTRY = { + "layernorm": torch.nn.LayerNorm, + "low_precision_layernorm": LPLayerNorm, + "rmsnorm": RMSNorm, + "low_precision_rmsnorm": LPRMSNorm, +} diff --git a/lisa_on_cuda/llava/model/language_model/mpt/param_init_fns.py b/lisa_on_cuda/llava/model/language_model/mpt/param_init_fns.py new file mode 100755 index 0000000000000000000000000000000000000000..5c1d17a22a62e4411a537e2d7c0c96422e4a4174 --- /dev/null +++ b/lisa_on_cuda/llava/model/language_model/mpt/param_init_fns.py @@ -0,0 +1,419 @@ +import math +import warnings +from collections.abc import Sequence +from functools import partial +from typing import Optional, Tuple, Union + +import torch +from torch import nn + +from .norm import NORM_CLASS_REGISTRY + + +def torch_default_param_init_fn_(module: nn.Module, verbose: int = 0, **kwargs): + del kwargs + if verbose > 1: + warnings.warn(f"Initializing network using module's reset_parameters attribute") + if hasattr(module, "reset_parameters"): + module.reset_parameters() + + +def fused_init_helper_(module: nn.Module, init_fn_): + _fused = getattr(module, "_fused", None) + if _fused is None: + raise RuntimeError(f"Internal logic error") + (dim, splits) = _fused + splits = (0, *splits, module.weight.size(dim)) + for s, e in zip(splits[:-1], splits[1:]): + slice_indices = [slice(None)] * module.weight.ndim + slice_indices[dim] = slice(s, e) + init_fn_(module.weight[slice_indices]) + + +def generic_param_init_fn_( + module: nn.Module, + init_fn_, + n_layers: int, + d_model: Optional[int] = None, + init_div_is_residual: Union[int, float, str, bool] = True, + emb_init_std: Optional[float] = None, + emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, + verbose: int = 0, + **kwargs, +): + del kwargs + if verbose > 1: + warnings.warn(f"If model has bias parameters they are initialized to 0.") + init_div_is_residual = init_div_is_residual + if init_div_is_residual is False: + div_is_residual = 1.0 + elif init_div_is_residual is True: + div_is_residual = math.sqrt(2 * n_layers) + elif isinstance(init_div_is_residual, float) or isinstance( + init_div_is_residual, int + ): + div_is_residual = init_div_is_residual + elif isinstance(init_div_is_residual, str) and init_div_is_residual.isnumeric(): + div_is_residual = float(init_div_is_residual) + else: + div_is_residual = 1.0 + raise ValueError( + f"Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}" + ) + if init_div_is_residual is not False: + if verbose > 1: + warnings.warn( + f"Initializing _is_residual layers then dividing them by {div_is_residual:.3f}. " + + f"Set `init_div_is_residual: false` in init config to disable this." + ) + if isinstance(module, nn.Linear): + if hasattr(module, "_fused"): + fused_init_helper_(module, init_fn_) + else: + init_fn_(module.weight) + if module.bias is not None: + torch.nn.init.zeros_(module.bias) + if init_div_is_residual is not False and getattr(module, "_is_residual", False): + with torch.no_grad(): + module.weight.div_(div_is_residual) + elif isinstance(module, nn.Embedding): + if emb_init_std is not None: + std = emb_init_std + if std == 0: + warnings.warn(f"Embedding layer initialized to 0.") + emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std) + if verbose > 1: + warnings.warn( + f"Embedding layer initialized using normal distribution with mean=0 and std={std!r}." + ) + elif emb_init_uniform_lim is not None: + lim = emb_init_uniform_lim + if isinstance(lim, Sequence): + if len(lim) > 2: + raise ValueError( + f"Uniform init requires a min and a max limit. User input: {lim}." + ) + if lim[0] == lim[1]: + warnings.warn(f"Embedding layer initialized to {lim[0]}.") + else: + if lim == 0: + warnings.warn(f"Embedding layer initialized to 0.") + lim = [-lim, lim] + (a, b) = lim + emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b) + if verbose > 1: + warnings.warn( + f"Embedding layer initialized using uniform distribution in range {lim}." + ) + else: + emb_init_fn_ = init_fn_ + emb_init_fn_(module.weight) + elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))): + if verbose > 1: + warnings.warn( + f"Norm weights are set to 1. If norm layer has a bias it is initialized to 0." + ) + if hasattr(module, "weight") and module.weight is not None: + torch.nn.init.ones_(module.weight) + if hasattr(module, "bias") and module.bias is not None: + torch.nn.init.zeros_(module.bias) + elif isinstance(module, nn.MultiheadAttention): + if module._qkv_same_embed_dim: + assert module.in_proj_weight is not None + assert ( + module.q_proj_weight is None + and module.k_proj_weight is None + and (module.v_proj_weight is None) + ) + assert d_model is not None + _d = d_model + splits = (0, _d, 2 * _d, 3 * _d) + for s, e in zip(splits[:-1], splits[1:]): + init_fn_(module.in_proj_weight[s:e]) + else: + assert ( + module.q_proj_weight is not None + and module.k_proj_weight is not None + and (module.v_proj_weight is not None) + ) + assert module.in_proj_weight is None + init_fn_(module.q_proj_weight) + init_fn_(module.k_proj_weight) + init_fn_(module.v_proj_weight) + if module.in_proj_bias is not None: + torch.nn.init.zeros_(module.in_proj_bias) + if module.bias_k is not None: + torch.nn.init.zeros_(module.bias_k) + if module.bias_v is not None: + torch.nn.init.zeros_(module.bias_v) + init_fn_(module.out_proj.weight) + if init_div_is_residual is not False and getattr( + module.out_proj, "_is_residual", False + ): + with torch.no_grad(): + module.out_proj.weight.div_(div_is_residual) + if module.out_proj.bias is not None: + torch.nn.init.zeros_(module.out_proj.bias) + else: + for _ in module.parameters(recurse=False): + raise NotImplementedError( + f"{module.__class__.__name__} parameters are not initialized by param_init_fn." + ) + + +def _normal_init_(std, mean=0.0): + return partial(torch.nn.init.normal_, mean=mean, std=std) + + +def _normal_param_init_fn_( + module: nn.Module, + std: float, + n_layers: int, + d_model: Optional[int] = None, + init_div_is_residual: Union[int, float, str, bool] = True, + emb_init_std: Optional[float] = None, + emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, + verbose: int = 0, + **kwargs, +): + del kwargs + init_fn_ = _normal_init_(std=std) + if verbose > 1: + warnings.warn(f"Using torch.nn.init.normal_ init fn mean=0.0, std={std}") + generic_param_init_fn_( + module=module, + init_fn_=init_fn_, + d_model=d_model, + n_layers=n_layers, + init_div_is_residual=init_div_is_residual, + emb_init_std=emb_init_std, + emb_init_uniform_lim=emb_init_uniform_lim, + verbose=verbose, + ) + + +def baseline_param_init_fn_( + module: nn.Module, + init_std: float, + n_layers: int, + d_model: Optional[int] = None, + init_div_is_residual: Union[int, float, str, bool] = True, + emb_init_std: Optional[float] = None, + emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, + verbose: int = 0, + **kwargs, +): + del kwargs + if init_std is None: + raise ValueError( + "You must set model.init_config['init_std'] to a float value to use the default initialization scheme." + ) + _normal_param_init_fn_( + module=module, + std=init_std, + d_model=d_model, + n_layers=n_layers, + init_div_is_residual=init_div_is_residual, + emb_init_std=emb_init_std, + emb_init_uniform_lim=emb_init_uniform_lim, + verbose=verbose, + ) + + +def small_param_init_fn_( + module: nn.Module, + n_layers: int, + d_model: int, + init_div_is_residual: Union[int, float, str, bool] = True, + emb_init_std: Optional[float] = None, + emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, + verbose: int = 0, + **kwargs, +): + del kwargs + std = math.sqrt(2 / (5 * d_model)) + _normal_param_init_fn_( + module=module, + std=std, + d_model=d_model, + n_layers=n_layers, + init_div_is_residual=init_div_is_residual, + emb_init_std=emb_init_std, + emb_init_uniform_lim=emb_init_uniform_lim, + verbose=verbose, + ) + + +def neox_param_init_fn_( + module: nn.Module, + n_layers: int, + d_model: int, + emb_init_std: Optional[float] = None, + emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, + verbose: int = 0, + **kwargs, +): + """From section 2.3.1 of GPT-NeoX-20B: + + An Open-Source AutoregressiveLanguage Model — Black et. al. (2022) + see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151 + and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py + """ + del kwargs + residual_div = n_layers / math.sqrt(10) + if verbose > 1: + warnings.warn(f"setting init_div_is_residual to {residual_div}") + small_param_init_fn_( + module=module, + d_model=d_model, + n_layers=n_layers, + init_div_is_residual=residual_div, + emb_init_std=emb_init_std, + emb_init_uniform_lim=emb_init_uniform_lim, + verbose=verbose, + ) + + +def kaiming_uniform_param_init_fn_( + module: nn.Module, + n_layers: int, + d_model: Optional[int] = None, + init_div_is_residual: Union[int, float, str, bool] = True, + emb_init_std: Optional[float] = None, + emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, + init_gain: float = 0, + fan_mode: str = "fan_in", + init_nonlinearity: str = "leaky_relu", + verbose: int = 0, + **kwargs, +): + del kwargs + if verbose > 1: + warnings.warn( + f"Using nn.init.kaiming_uniform_ init fn with parameters: " + + f"a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}" + ) + kaiming_uniform_ = partial( + nn.init.kaiming_uniform_, + a=init_gain, + mode=fan_mode, + nonlinearity=init_nonlinearity, + ) + generic_param_init_fn_( + module=module, + init_fn_=kaiming_uniform_, + d_model=d_model, + n_layers=n_layers, + init_div_is_residual=init_div_is_residual, + emb_init_std=emb_init_std, + emb_init_uniform_lim=emb_init_uniform_lim, + verbose=verbose, + ) + + +def kaiming_normal_param_init_fn_( + module: nn.Module, + n_layers: int, + d_model: Optional[int] = None, + init_div_is_residual: Union[int, float, str, bool] = True, + emb_init_std: Optional[float] = None, + emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, + init_gain: float = 0, + fan_mode: str = "fan_in", + init_nonlinearity: str = "leaky_relu", + verbose: int = 0, + **kwargs, +): + del kwargs + if verbose > 1: + warnings.warn( + f"Using nn.init.kaiming_normal_ init fn with parameters: " + + f"a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}" + ) + kaiming_normal_ = partial( + torch.nn.init.kaiming_normal_, + a=init_gain, + mode=fan_mode, + nonlinearity=init_nonlinearity, + ) + generic_param_init_fn_( + module=module, + init_fn_=kaiming_normal_, + d_model=d_model, + n_layers=n_layers, + init_div_is_residual=init_div_is_residual, + emb_init_std=emb_init_std, + emb_init_uniform_lim=emb_init_uniform_lim, + verbose=verbose, + ) + + +def xavier_uniform_param_init_fn_( + module: nn.Module, + n_layers: int, + d_model: Optional[int] = None, + init_div_is_residual: Union[int, float, str, bool] = True, + emb_init_std: Optional[float] = None, + emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, + init_gain: float = 0, + verbose: int = 0, + **kwargs, +): + del kwargs + xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain) + if verbose > 1: + warnings.warn( + f"Using torch.nn.init.xavier_uniform_ init fn with parameters: " + + f"gain={init_gain}" + ) + generic_param_init_fn_( + module=module, + init_fn_=xavier_uniform_, + d_model=d_model, + n_layers=n_layers, + init_div_is_residual=init_div_is_residual, + emb_init_std=emb_init_std, + emb_init_uniform_lim=emb_init_uniform_lim, + verbose=verbose, + ) + + +def xavier_normal_param_init_fn_( + module: nn.Module, + n_layers: int, + d_model: Optional[int] = None, + init_div_is_residual: Union[int, float, str, bool] = True, + emb_init_std: Optional[float] = None, + emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, + init_gain: float = 0, + verbose: int = 0, + **kwargs, +): + xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain) + if verbose > 1: + warnings.warn( + f"Using torch.nn.init.xavier_normal_ init fn with parameters: " + + f"gain={init_gain}" + ) + generic_param_init_fn_( + module=module, + init_fn_=xavier_normal_, + d_model=d_model, + n_layers=n_layers, + init_div_is_residual=init_div_is_residual, + emb_init_std=emb_init_std, + emb_init_uniform_lim=emb_init_uniform_lim, + verbose=verbose, + ) + + +MODEL_INIT_REGISTRY = { + "default_": torch_default_param_init_fn_, + "baseline_": baseline_param_init_fn_, + "kaiming_uniform_": kaiming_uniform_param_init_fn_, + "kaiming_normal_": kaiming_normal_param_init_fn_, + "neox_init_": neox_param_init_fn_, + "small_init_": small_param_init_fn_, + "xavier_uniform_": xavier_uniform_param_init_fn_, + "xavier_normal_": xavier_normal_param_init_fn_, +} diff --git a/lisa_on_cuda/llava/model/llava_arch.py b/lisa_on_cuda/llava/model/llava_arch.py new file mode 100755 index 0000000000000000000000000000000000000000..4468579f185019a154419dcb0dfaf499f87133c9 --- /dev/null +++ b/lisa_on_cuda/llava/model/llava_arch.py @@ -0,0 +1,395 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from abc import ABC, abstractmethod + +import torch +import torch.nn as nn + +from lisa_on_cuda.utils.utils import IGNORE_INDEX, IMAGE_TOKEN_INDEX + +from .multimodal_encoder.builder import build_vision_tower + + +class LlavaMetaModel: + def __init__(self, config): + super(LlavaMetaModel, self).__init__(config) + + if hasattr(config, "mm_vision_tower"): + self.vision_tower = build_vision_tower(config, delay_load=True) + self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size) + + def get_vision_tower(self): + vision_tower = getattr(self, "vision_tower", None) + if type(vision_tower) is list: + vision_tower = vision_tower[0] + return vision_tower + + def initialize_vision_modules(self, model_args, fsdp=None): + vision_tower = model_args.vision_tower + mm_vision_select_layer = model_args.mm_vision_select_layer + mm_vision_select_feature = model_args.mm_vision_select_feature + pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter + + self.config.mm_vision_tower = vision_tower + + vision_tower = build_vision_tower(model_args) + + if fsdp is not None and len(fsdp) > 0: + self.vision_tower = [vision_tower] + else: + self.vision_tower = vision_tower + + self.config.use_mm_proj = True + self.config.mm_hidden_size = vision_tower.hidden_size + self.config.mm_vision_select_layer = mm_vision_select_layer + self.config.mm_vision_select_feature = mm_vision_select_feature + + if not hasattr(self, "mm_projector"): + self.mm_projector = nn.Linear( + self.config.mm_hidden_size, self.config.hidden_size + ) + + if pretrain_mm_mlp_adapter is not None: + mm_projector_weights = torch.load( + pretrain_mm_mlp_adapter, map_location="cpu" + ) + + def get_w(weights, keyword): + return { + k.split(keyword + ".")[1]: v + for k, v in weights.items() + if keyword in k + } + + self.mm_projector.load_state_dict( + get_w(mm_projector_weights, "mm_projector") + ) + + +class LlavaMetaForCausalLM(ABC): + @abstractmethod + def get_model(self): + pass + + def get_vision_tower(self): + return self.get_model().get_vision_tower() + + def encode_images(self, images): + image_features = self.get_model().get_vision_tower()(images) + image_features = self.get_model().mm_projector(image_features) + return image_features + + def prepare_inputs_labels_for_multimodal( + self, input_ids, attention_mask, past_key_values, labels, images + ): + vision_tower = self.get_vision_tower() + if vision_tower is None or images is None or input_ids.shape[1] == 1: + if ( + past_key_values is not None + and vision_tower is not None + and images is not None + and input_ids.shape[1] == 1 + ): + attention_mask = torch.ones( + (attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), + dtype=attention_mask.dtype, + device=attention_mask.device, + ) + return input_ids, attention_mask, past_key_values, None, labels + + if type(images) is list or images.ndim == 5: + concat_images = torch.cat([image for image in images], dim=0) + image_features = self.encode_images(concat_images) + split_sizes = [image.shape[0] for image in images] + image_features = torch.split(image_features, split_sizes, dim=0) + image_features = [x.flatten(0, 1) for x in image_features] + else: + image_features = self.encode_images(images) + + new_input_embeds = [] + new_labels = [] if labels is not None else None + cur_image_idx = 0 + for batch_idx, cur_input_ids in enumerate(input_ids): + if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: + # multimodal LLM, but the current sample is not multimodal + cur_input_embeds = self.get_model().embed_tokens(cur_input_ids) + cur_input_embeds = ( + cur_input_embeds + + ( + 0.0 * self.get_model().mm_projector(vision_tower.dummy_feature) + ).sum() + ) + new_input_embeds.append(cur_input_embeds) + if labels is not None: + new_labels.append(labels[batch_idx]) + cur_image_idx += 1 + continue + image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] + cur_new_input_embeds = [] + if labels is not None: + cur_labels = labels[batch_idx] + cur_new_labels = [] + assert cur_labels.shape == cur_input_ids.shape + while image_token_indices.numel() > 0: + cur_image_features = image_features[cur_image_idx] + image_token_start = image_token_indices[0] + if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( + self.config, "mm_use_im_start_end", False + ): + cur_new_input_embeds.append( + self.get_model() + .embed_tokens(cur_input_ids[: image_token_start - 1]) + .detach() + ) + cur_new_input_embeds.append( + self.get_model().embed_tokens( + cur_input_ids[image_token_start - 1 : image_token_start] + ) + ) + cur_new_input_embeds.append(cur_image_features) + cur_new_input_embeds.append( + self.get_model().embed_tokens( + cur_input_ids[image_token_start + 1 : image_token_start + 2] + ) + ) + if labels is not None: + cur_new_labels.append(cur_labels[:image_token_start]) + cur_new_labels.append( + torch.full( + (cur_image_features.shape[0],), + IGNORE_INDEX, + device=labels.device, + dtype=labels.dtype, + ) + ) + cur_new_labels.append( + cur_labels[image_token_start : image_token_start + 1] + ) + cur_labels = cur_labels[image_token_start + 2 :] + elif getattr(self.config, "mm_use_im_start_end", False): + cur_new_input_embeds.append( + self.get_model().embed_tokens(cur_input_ids[:image_token_start]) + ) + cur_new_input_embeds.append(cur_image_features) + cur_new_input_embeds.append( + self.get_model().embed_tokens( + cur_input_ids[image_token_start + 1 : image_token_start + 2] + ) + ) + if labels is not None: + cur_new_labels.append(cur_labels[:image_token_start]) + cur_new_labels.append( + torch.full( + (cur_image_features.shape[0],), + IGNORE_INDEX, + device=labels.device, + dtype=labels.dtype, + ) + ) + cur_new_labels.append( + cur_labels[image_token_start + 1 : image_token_start + 2] + ) + cur_labels = cur_labels[image_token_start + 2 :] + else: + cur_new_input_embeds.append( + self.get_model().embed_tokens(cur_input_ids[:image_token_start]) + ) + cur_new_input_embeds.append(cur_image_features) + if labels is not None: + cur_new_labels.append(cur_labels[:image_token_start]) + cur_new_labels.append( + torch.full( + (cur_image_features.shape[0],), + IGNORE_INDEX, + device=labels.device, + dtype=labels.dtype, + ) + ) + cur_labels = cur_labels[image_token_start + 1 :] + cur_image_idx += 1 + if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( + self.config, "mm_use_im_start_end", False + ): + cur_input_ids = cur_input_ids[image_token_start + 2 :] + elif getattr(self.config, "mm_use_im_start_end", False): + cur_input_ids = cur_input_ids[image_token_start + 2 :] + else: + cur_input_ids = cur_input_ids[image_token_start + 1 :] + image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] + if cur_input_ids.numel() > 0: + if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( + self.config, "mm_use_im_start_end", False + ): + cur_new_input_embeds.append( + self.get_model().embed_tokens(cur_input_ids).detach() + ) + elif getattr(self.config, "mm_use_im_start_end", False): + cur_new_input_embeds.append( + self.get_model().embed_tokens(cur_input_ids) + ) + else: + cur_new_input_embeds.append( + self.get_model().embed_tokens(cur_input_ids) + ) + if labels is not None: + cur_new_labels.append(cur_labels) + cur_new_input_embeds = [ + x.to(device=self.device) for x in cur_new_input_embeds + ] + cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) + new_input_embeds.append(cur_new_input_embeds) + if labels is not None: + cur_new_labels = torch.cat(cur_new_labels, dim=0) + new_labels.append(cur_new_labels) + + if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): + max_len = max(x.shape[0] for x in new_input_embeds) + + new_input_embeds_align = [] + for cur_new_embed in new_input_embeds: + cur_new_embed = torch.cat( + ( + cur_new_embed, + torch.zeros( + (max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), + dtype=cur_new_embed.dtype, + device=cur_new_embed.device, + ), + ), + dim=0, + ) + new_input_embeds_align.append(cur_new_embed) + new_input_embeds = torch.stack(new_input_embeds_align, dim=0) + + if labels is not None: + new_labels_align = [] + _new_labels = new_labels + for cur_new_label in new_labels: + cur_new_label = torch.cat( + ( + cur_new_label, + torch.full( + (max_len - cur_new_label.shape[0],), + IGNORE_INDEX, + dtype=cur_new_label.dtype, + device=cur_new_label.device, + ), + ), + dim=0, + ) + new_labels_align.append(cur_new_label) + new_labels = torch.stack(new_labels_align, dim=0) + + if attention_mask is not None: + new_attention_mask = [] + for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip( + attention_mask, _new_labels, new_labels + ): + new_attn_mask_pad_left = torch.full( + (cur_new_labels.shape[0] - labels.shape[1],), + True, + dtype=attention_mask.dtype, + device=attention_mask.device, + ) + new_attn_mask_pad_right = torch.full( + (cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), + False, + dtype=attention_mask.dtype, + device=attention_mask.device, + ) + cur_new_attention_mask = torch.cat( + ( + new_attn_mask_pad_left, + cur_attention_mask, + new_attn_mask_pad_right, + ), + dim=0, + ) + new_attention_mask.append(cur_new_attention_mask) + attention_mask = torch.stack(new_attention_mask, dim=0) + assert attention_mask.shape == new_labels.shape + else: + new_input_embeds = torch.stack(new_input_embeds, dim=0) + if labels is not None: + new_labels = torch.stack(new_labels, dim=0) + + if attention_mask is not None: + new_attn_mask_pad_left = torch.full( + ( + attention_mask.shape[0], + new_input_embeds.shape[1] - input_ids.shape[1], + ), + True, + dtype=attention_mask.dtype, + device=attention_mask.device, + ) + attention_mask = torch.cat( + (new_attn_mask_pad_left, attention_mask), dim=1 + ) + assert attention_mask.shape == new_input_embeds.shape[:2] + + return None, attention_mask, past_key_values, new_input_embeds, new_labels + + # def initialize_vision_tokenizer(self, model_args, tokenizer): + def initialize_vision_tokenizer(self, model_args, num_new_tokens): + # if model_args.mm_use_im_patch_token: + # tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) + # self.resize_token_embeddings(len(tokenizer)) + + if model_args.mm_use_im_start_end: + # num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) + # self.resize_token_embeddings(len(tokenizer)) + + # if num_new_tokens > 0: + # input_embeddings = self.get_input_embeddings().weight.data + # output_embeddings = self.get_output_embeddings().weight.data + + # input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( + # dim=0, keepdim=True) + # output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( + # dim=0, keepdim=True) + + # input_embeddings[-num_new_tokens:] = input_embeddings_avg + # output_embeddings[-num_new_tokens:] = output_embeddings_avg + + if model_args.tune_mm_mlp_adapter: + for p in self.get_input_embeddings().parameters(): + p.requires_grad = True + for p in self.get_output_embeddings().parameters(): + p.requires_grad = False + + if model_args.pretrain_mm_mlp_adapter: + mm_projector_weights = torch.load( + model_args.pretrain_mm_mlp_adapter, map_location="cpu" + ) + embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"] + assert num_new_tokens == 2 + if input_embeddings.shape == embed_tokens_weight.shape: + input_embeddings[-num_new_tokens:] = embed_tokens_weight[ + -num_new_tokens: + ] + elif embed_tokens_weight.shape[0] == num_new_tokens: + input_embeddings[-num_new_tokens:] = embed_tokens_weight + else: + raise ValueError( + f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}." + ) + elif model_args.mm_use_im_patch_token: + if model_args.tune_mm_mlp_adapter: + for p in self.get_input_embeddings().parameters(): + p.requires_grad = False + for p in self.get_output_embeddings().parameters(): + p.requires_grad = False diff --git a/lisa_on_cuda/llava/model/make_delta.py b/lisa_on_cuda/llava/model/make_delta.py new file mode 100755 index 0000000000000000000000000000000000000000..1ac1a984c8c9560e010eedfb0c150c7e221abab2 --- /dev/null +++ b/lisa_on_cuda/llava/model/make_delta.py @@ -0,0 +1,63 @@ +""" +Usage: +python3 -m llava.model.make_delta --base ~/model_weights/llama-7b --target ~/model_weights/llava-7b --delta ~/model_weights/llava-7b-delta --hub-repo-id liuhaotian/llava-7b-delta +""" +import argparse + +import torch +from .utils import auto_upgrade +from tqdm import tqdm +from transformers import AutoModelForCausalLM, AutoTokenizer + + +def make_delta(base_model_path, target_model_path, delta_path, hub_repo_id): + print("Loading base model") + base = AutoModelForCausalLM.from_pretrained( + base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True + ) + + print("Loading target model") + auto_upgrade(target_model_path) + target = AutoModelForCausalLM.from_pretrained( + target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True + ) + + print("Calculating delta") + for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"): + if name not in base.state_dict(): + assert name in [ + "model.mm_projector.weight", + "model.mm_projector.bias", + ], f"{name} not in base model" + continue + if param.data.shape == base.state_dict()[name].shape: + param.data -= base.state_dict()[name] + else: + assert name in [ + "model.embed_tokens.weight", + "lm_head.weight", + ], f"{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}" + bparam = base.state_dict()[name] + param.data[: bparam.shape[0], : bparam.shape[1]] -= bparam + + print("Saving delta") + if hub_repo_id: + kwargs = {"push_to_hub": True, "repo_id": hub_repo_id} + else: + kwargs = {} + target.save_pretrained(delta_path, **kwargs) + target_tokenizer = AutoTokenizer.from_pretrained(target_model_path) + target_tokenizer.save_pretrained(delta_path, **kwargs) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--base-model-path", type=str, required=True) + parser.add_argument("--target-model-path", type=str, required=True) + parser.add_argument("--delta-path", type=str, required=True) + parser.add_argument("--hub-repo-id", type=str, default=None) + args = parser.parse_args() + + make_delta( + args.base_model_path, args.target_model_path, args.delta_path, args.hub_repo_id + ) diff --git a/lisa_on_cuda/llava/model/multimodal_encoder/builder.py b/lisa_on_cuda/llava/model/multimodal_encoder/builder.py new file mode 100755 index 0000000000000000000000000000000000000000..087faa85779eb991e73adf17e75e387070c3e313 --- /dev/null +++ b/lisa_on_cuda/llava/model/multimodal_encoder/builder.py @@ -0,0 +1,17 @@ +from .clip_encoder import CLIPVisionTower + + +def build_vision_tower(vision_tower_cfg, **kwargs): + vision_tower = getattr( + vision_tower_cfg, + "mm_vision_tower", + getattr(vision_tower_cfg, "vision_tower", None), + ) + if ( + vision_tower.startswith("openai") + or vision_tower.startswith("laion") + or "clip" in vision_tower + ): + return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) + + raise ValueError(f"Unknown vision tower: {vision_tower}") diff --git a/lisa_on_cuda/llava/model/multimodal_encoder/clip_encoder.py b/lisa_on_cuda/llava/model/multimodal_encoder/clip_encoder.py new file mode 100755 index 0000000000000000000000000000000000000000..793b70b5f3ceb02d382d3e39b9eda8adc8b01540 --- /dev/null +++ b/lisa_on_cuda/llava/model/multimodal_encoder/clip_encoder.py @@ -0,0 +1,87 @@ +import torch +import torch.nn as nn +from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel + + +class CLIPVisionTower(nn.Module): + def __init__(self, vision_tower, args, delay_load=False): + super().__init__() + + self.is_loaded = False + + self.vision_tower_name = vision_tower + self.select_layer = args.mm_vision_select_layer + self.select_feature = getattr(args, "mm_vision_select_feature", "patch") + + if not delay_load: + self.load_model() + else: + self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) + + def load_model(self): + self.image_processor = CLIPImageProcessor.from_pretrained( + self.vision_tower_name + ) + self.vision_tower = CLIPVisionModel.from_pretrained( + self.vision_tower_name, low_cpu_mem_usage=True + ) + self.vision_tower.requires_grad_(False) + self.is_loaded = True + + def feature_select(self, image_forward_outs): + image_features = image_forward_outs.hidden_states[self.select_layer] + if self.select_feature == "patch": + image_features = image_features[:, 1:] + elif self.select_feature == "cls_patch": + image_features = image_features + else: + raise ValueError(f"Unexpected select feature: {self.select_feature}") + return image_features + + @torch.no_grad() + def forward(self, images): + if type(images) is list: + image_features = [] + for image in images: + image_forward_out = self.vision_tower( + image.to(device=self.device, dtype=self.dtype).unsqueeze(0), + output_hidden_states=True, + ) + image_feature = self.feature_select(image_forward_out).to(image.dtype) + image_features.append(image_feature) + else: + image_forward_outs = self.vision_tower( + images.to(device=self.device, dtype=self.dtype), + output_hidden_states=True, + ) + image_features = self.feature_select(image_forward_outs).to(images.dtype) + + torch.cuda.empty_cache() + return image_features + + @property + def dummy_feature(self): + return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) + + @property + def dtype(self): + return self.vision_tower.dtype + + @property + def device(self): + return self.vision_tower.device + + @property + def config(self): + if self.is_loaded: + return self.vision_tower.config + else: + return self.cfg_only + + @property + def hidden_size(self): + return self.config.hidden_size + + @property + def num_patches(self): + return (self.config.image_size // self.config.patch_size) ** 2 diff --git a/lisa_on_cuda/llava/model/utils.py b/lisa_on_cuda/llava/model/utils.py new file mode 100755 index 0000000000000000000000000000000000000000..e79141eed71e5414cb821cb40c3744ae82a2f130 --- /dev/null +++ b/lisa_on_cuda/llava/model/utils.py @@ -0,0 +1,26 @@ +import sys + +from transformers import AutoConfig + + +def auto_upgrade(config): + cfg = AutoConfig.from_pretrained(config) + if "llava" in config and "llava" not in cfg.model_type: + assert cfg.model_type == "llama" + print( + "You are using newer LLaVA code base, while the checkpoint of v0 is from older code base." + ) + print( + "You must upgrade the checkpoint to the new code base (this can be done automatically)." + ) + confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]") + if confirm.lower() in ["y", "yes"]: + print("Upgrading checkpoint...") + assert len(cfg.architectures) == 1 + setattr(cfg.__class__, "model_type", "llava") + cfg.architectures[0] = "LlavaLlamaForCausalLM" + cfg.save_pretrained(config) + print("Checkpoint upgraded.") + else: + print("Checkpoint upgrade aborted.") + sys.exit(1) diff --git a/lisa_on_cuda/llava/train/llama_flash_attn_monkey_patch.py b/lisa_on_cuda/llava/train/llama_flash_attn_monkey_patch.py new file mode 100755 index 0000000000000000000000000000000000000000..312aa87696be6464aa7fc77dd3c2daf7fbaaa94c --- /dev/null +++ b/lisa_on_cuda/llava/train/llama_flash_attn_monkey_patch.py @@ -0,0 +1,126 @@ +import logging +from typing import List, Optional, Tuple + +import torch +import transformers +from einops import rearrange +from torch import nn +from transformers.models.llama.modeling_llama import apply_rotary_pos_emb + +try: + from flash_attn.flash_attn_interface import \ + flash_attn_unpadded_qkvpacked_func +except ImportError: + from flash_attn.flash_attn_interface import ( + flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func, + ) + +from flash_attn.bert_padding import pad_input, unpad_input + + +def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel + + attention_mask: [bsz, q_len] + """ + bsz, q_len, _ = hidden_states.size() + + query_states = ( + self.q_proj(hidden_states) + .view(bsz, q_len, self.num_heads, self.head_dim) + .transpose(1, 2) + ) + key_states = ( + self.k_proj(hidden_states) + .view(bsz, q_len, self.num_heads, self.head_dim) + .transpose(1, 2) + ) + value_states = ( + self.v_proj(hidden_states) + .view(bsz, q_len, self.num_heads, self.head_dim) + .transpose(1, 2) + ) + # [bsz, q_len, nh, hd] + # [bsz, nh, q_len, hd] + + kv_seq_len = key_states.shape[-2] + assert past_key_value is None, "past_key_value is not supported" + + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb( + query_states, key_states, cos, sin, position_ids + ) + # [bsz, nh, t, hd] + assert not output_attentions, "output_attentions is not supported" + assert not use_cache, "use_cache is not supported" + + # Flash attention codes from + # https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py + + # transform the data into the format required by flash attention + qkv = torch.stack( + [query_states, key_states, value_states], dim=2 + ) # [bsz, nh, 3, q_len, hd] + qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd] + # We have disabled _prepare_decoder_attention_mask in LlamaModel + # the attention_mask should be the same as the key_padding_mask + key_padding_mask = attention_mask + + if key_padding_mask is None: + qkv = rearrange(qkv, "b s ... -> (b s) ...") + max_s = q_len + cu_q_lens = torch.arange( + 0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device + ) + output = flash_attn_unpadded_qkvpacked_func( + qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True + ) + output = rearrange(output, "(b s) ... -> b s ...", b=bsz) + else: + nheads = qkv.shape[-2] + x = rearrange(qkv, "b s three h d -> b s (three h d)") + x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask) + x_unpad = rearrange( + x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads + ) + output_unpad = flash_attn_unpadded_qkvpacked_func( + x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True + ) + output = rearrange( + pad_input( + rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz, q_len + ), + "b s (h d) -> b s h d", + h=nheads, + ) + return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, None + + +# Disable the transformation of the attention mask in LlamaModel as the flash attention +# requires the attention mask to be the same as the key_padding_mask +def _prepare_decoder_attention_mask( + self, attention_mask, input_shape, inputs_embeds, past_key_values_length +): + # [bsz, seq_len] + return attention_mask + + +def replace_llama_attn_with_flash_attn(): + cuda_major, cuda_minor = torch.cuda.get_device_capability() + if cuda_major < 8: + logging.warning( + "Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward." + "ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593" + ) + transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = ( + _prepare_decoder_attention_mask + ) + transformers.models.llama.modeling_llama.LlamaAttention.forward = forward diff --git a/lisa_on_cuda/llava/train/llava_trainer.py b/lisa_on_cuda/llava/train/llava_trainer.py new file mode 100755 index 0000000000000000000000000000000000000000..c4fd9397533abeb902b368825e224f1ae320985b --- /dev/null +++ b/lisa_on_cuda/llava/train/llava_trainer.py @@ -0,0 +1,67 @@ +import os +from typing import Optional + +import torch +from transformers import Trainer + + +def maybe_zero_3(param, ignore_status=False, name=None): + from deepspeed import zero + from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus + + if hasattr(param, "ds_id"): + if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: + if not ignore_status: + print(name, "no ignore status") + with zero.GatheredParameters([param]): + param = param.data.detach().cpu().clone() + else: + param = param.detach().cpu().clone() + return param + + +def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): + to_return = { + k: t + for k, t in named_params + if any(key_match in k for key_match in keys_to_match) + } + to_return = { + k: maybe_zero_3(v, ignore_status=True, name=k).cpu() + for k, v in to_return.items() + } + return to_return + + +class LLaVATrainer(Trainer): + def _save_checkpoint(self, model, trial, metrics=None): + if getattr(self.args, "tune_mm_mlp_adapter", False): + from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR + + checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" + + run_dir = self._get_output_dir(trial=trial) + output_dir = os.path.join(run_dir, checkpoint_folder) + + # Only save Adapter + keys_to_match = ["mm_projector"] + if getattr(self.args, "use_im_start_end", False): + keys_to_match.extend(["embed_tokens", "embed_in"]) + + weight_to_save = get_mm_adapter_state_maybe_zero_3( + self.model.named_parameters(), keys_to_match + ) + + if self.args.local_rank == 0 or self.args.local_rank == -1: + self.model.config.save_pretrained(output_dir) + torch.save( + weight_to_save, os.path.join(output_dir, f"mm_projector.bin") + ) + else: + super(LLaVATrainer, self)._save_checkpoint(model, trial, metrics) + + def _save(self, output_dir: Optional[str] = None, state_dict=None): + if getattr(self.args, "tune_mm_mlp_adapter", False): + pass + else: + super(LLaVATrainer, self)._save(output_dir, state_dict) diff --git a/lisa_on_cuda/llava/train/train.py b/lisa_on_cuda/llava/train/train.py new file mode 100755 index 0000000000000000000000000000000000000000..aef55e0db739d55b0746fff378fb78ba63973211 --- /dev/null +++ b/lisa_on_cuda/llava/train/train.py @@ -0,0 +1,1038 @@ +# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: +# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: +# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import copy +import json +import logging +import os +import pathlib +from dataclasses import dataclass, field +from typing import Dict, List, Optional, Sequence + +import torch +import transformers +from llava import conversation as conversation_lib +from llava.constants import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN, + DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, + IMAGE_TOKEN_INDEX) +from llava.mm_utils import tokenizer_image_token +from llava.model import * +from llava.train.llava_trainer import LLaVATrainer +from PIL import Image +from torch.utils.data import Dataset + +local_rank = None + + +def rank0_print(*args): + if local_rank == 0: + print(*args) + + +@dataclass +class ModelArguments: + model_name_or_path: Optional[str] = field(default="facebook/opt-125m") + version: Optional[str] = field(default="v0") + freeze_backbone: bool = field(default=False) + tune_mm_mlp_adapter: bool = field(default=False) + vision_tower: Optional[str] = field(default=None) + mm_vision_select_layer: Optional[int] = field( + default=-1 + ) # default to the last layer + pretrain_mm_mlp_adapter: Optional[str] = field(default=None) + mm_use_im_start_end: bool = field(default=False) + mm_use_im_patch_token: bool = field(default=True) + mm_vision_select_feature: Optional[str] = field(default="patch") + + +@dataclass +class DataArguments: + data_path: str = field( + default=None, metadata={"help": "Path to the training data."} + ) + lazy_preprocess: bool = False + is_multimodal: bool = False + image_folder: Optional[str] = field(default=None) + image_aspect_ratio: str = "square" + image_grid_pinpoints: Optional[str] = field(default=None) + + +@dataclass +class TrainingArguments(transformers.TrainingArguments): + cache_dir: Optional[str] = field(default=None) + optim: str = field(default="adamw_torch") + remove_unused_columns: bool = field(default=False) + freeze_mm_mlp_adapter: bool = field(default=False) + mpt_attn_impl: Optional[str] = field(default="triton") + model_max_length: int = field( + default=512, + metadata={ + "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." + }, + ) + double_quant: bool = field( + default=True, + metadata={ + "help": "Compress the quantization statistics through double quantization." + }, + ) + quant_type: str = field( + default="nf4", + metadata={ + "help": "Quantization data type to use. Should be one of `fp4` or `nf4`." + }, + ) + bits: int = field(default=16, metadata={"help": "How many bits to use."}) + lora_enable: bool = False + lora_r: int = 64 + lora_alpha: int = 16 + lora_dropout: float = 0.05 + lora_weight_path: str = "" + lora_bias: str = "none" + + +def maybe_zero_3(param, ignore_status=False, name=None): + from deepspeed import zero + from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus + + if hasattr(param, "ds_id"): + if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: + if not ignore_status: + logging.warning( + f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}" + ) + with zero.GatheredParameters([param]): + param = param.data.detach().cpu().clone() + else: + param = param.detach().cpu().clone() + return param + + +# Borrowed from peft.utils.get_peft_model_state_dict +def get_peft_state_maybe_zero_3(named_params, bias): + if bias == "none": + to_return = {k: t for k, t in named_params if "lora_" in k} + elif bias == "all": + to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} + elif bias == "lora_only": + to_return = {} + maybe_lora_bias = {} + lora_bias_names = set() + for k, t in named_params: + if "lora_" in k: + to_return[k] = t + bias_name = k.split("lora_")[0] + "bias" + lora_bias_names.add(bias_name) + elif "bias" in k: + maybe_lora_bias[k] = t + for k, t in maybe_lora_bias.items(): + if bias_name in lora_bias_names: + to_return[bias_name] = t + else: + raise NotImplementedError + to_return = {k: maybe_zero_3(v, name=k) for k, v in to_return.items()} + return to_return + + +def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): + to_return = {k: t for k, t in named_params if "lora_" not in k} + if require_grad_only: + to_return = {k: t for k, t in to_return.items() if t.requires_grad} + to_return = { + k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items() + } + return to_return + + +def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): + to_return = { + k: t + for k, t in named_params + if any(key_match in k for key_match in keys_to_match) + } + to_return = { + k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items() + } + return to_return + + +def find_all_linear_names(model): + cls = torch.nn.Linear + lora_module_names = set() + for name, module in model.named_modules(): + if isinstance(module, cls): + names = name.split(".") + lora_module_names.add(names[0] if len(names) == 1 else names[-1]) + + if "lm_head" in lora_module_names: # needed for 16-bit + lora_module_names.remove("lm_head") + return list(lora_module_names) + + +def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): + """Collects the state dict and dump to disk.""" + + if getattr(trainer.args, "tune_mm_mlp_adapter", False): + # Only save Adapter + keys_to_match = ["mm_projector"] + if getattr(trainer.args, "use_im_start_end", False): + keys_to_match.extend(["embed_tokens", "embed_in"]) + + weight_to_save = get_mm_adapter_state_maybe_zero_3( + trainer.model.named_parameters(), keys_to_match + ) + trainer.model.config.save_pretrained(output_dir) + + current_folder = output_dir.split("/")[-1] + parent_folder = os.path.dirname(output_dir) + if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: + if current_folder.startswith("checkpoint-"): + mm_projector_folder = os.path.join(parent_folder, "mm_projector") + os.makedirs(mm_projector_folder, exist_ok=True) + torch.save( + weight_to_save, + os.path.join(mm_projector_folder, f"{current_folder}.bin"), + ) + else: + torch.save( + weight_to_save, os.path.join(output_dir, f"mm_projector.bin") + ) + return + + if trainer.deepspeed: + torch.cuda.synchronize() + trainer.save_model(output_dir) + return + + state_dict = trainer.model.state_dict() + if trainer.args.should_save: + cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} + del state_dict + trainer._save(output_dir, state_dict=cpu_state_dict) # noqa + + +def smart_tokenizer_and_embedding_resize( + special_tokens_dict: Dict, + tokenizer: transformers.PreTrainedTokenizer, + model: transformers.PreTrainedModel, +): + """Resize tokenizer and embedding. + + Note: This is the unoptimized version that may make your embedding size not be divisible by 64. + """ + num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) + model.resize_token_embeddings(len(tokenizer)) + + if num_new_tokens > 0: + input_embeddings = model.get_input_embeddings().weight.data + output_embeddings = model.get_output_embeddings().weight.data + + input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True + ) + output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True + ) + + input_embeddings[-num_new_tokens:] = input_embeddings_avg + output_embeddings[-num_new_tokens:] = output_embeddings_avg + + +def _tokenize_fn( + strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer +) -> Dict: + """Tokenize a list of strings.""" + tokenized_list = [ + tokenizer( + text, + return_tensors="pt", + padding="longest", + max_length=tokenizer.model_max_length, + truncation=True, + ) + for text in strings + ] + input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list] + input_ids_lens = labels_lens = [ + tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() + for tokenized in tokenized_list + ] + return dict( + input_ids=input_ids, + labels=labels, + input_ids_lens=input_ids_lens, + labels_lens=labels_lens, + ) + + +def _mask_targets(target, tokenized_lens, speakers): + # cur_idx = 0 + cur_idx = tokenized_lens[0] + tokenized_lens = tokenized_lens[1:] + target[:cur_idx] = IGNORE_INDEX + for tokenized_len, speaker in zip(tokenized_lens, speakers): + if speaker == "human": + target[cur_idx + 2 : cur_idx + tokenized_len] = IGNORE_INDEX + cur_idx += tokenized_len + + +def _add_speaker_and_signal(header, source, get_conversation=True): + """Add speaker and start/end signal on each round.""" + BEGIN_SIGNAL = "### " + END_SIGNAL = "\n" + conversation = header + for sentence in source: + from_str = sentence["from"] + if from_str.lower() == "human": + from_str = conversation_lib.default_conversation.roles[0] + elif from_str.lower() == "gpt": + from_str = conversation_lib.default_conversation.roles[1] + else: + from_str = "unknown" + sentence["value"] = ( + BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL + ) + if get_conversation: + conversation += sentence["value"] + conversation += BEGIN_SIGNAL + return conversation + + +def preprocess_multimodal(sources: Sequence[str], data_args: DataArguments) -> Dict: + is_multimodal = data_args.is_multimodal + if not is_multimodal: + return sources + + for source in sources: + for sentence in source: + if DEFAULT_IMAGE_TOKEN in sentence["value"]: + sentence["value"] = ( + sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip() + ) + sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"] + sentence["value"] = sentence["value"].strip() + if "mmtag" in conversation_lib.default_conversation.version: + sentence["value"] = sentence["value"].replace( + DEFAULT_IMAGE_TOKEN, + "" + DEFAULT_IMAGE_TOKEN + "", + ) + replace_token = DEFAULT_IMAGE_TOKEN + if data_args.mm_use_im_start_end: + replace_token = ( + DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN + ) + sentence["value"] = sentence["value"].replace( + DEFAULT_IMAGE_TOKEN, replace_token + ) + + return sources + + +def preprocess_llama_2( + sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False +) -> Dict: + conv = conversation_lib.default_conversation.copy() + roles = {"human": conv.roles[0], "gpt": conv.roles[1]} + + # Apply prompt templates + conversations = [] + for i, source in enumerate(sources): + if roles[source[0]["from"]] != conv.roles[0]: + # Skip the first one if it is not from human + source = source[1:] + + conv.messages = [] + for j, sentence in enumerate(source): + role = roles[sentence["from"]] + assert role == conv.roles[j % 2], f"{i}" + conv.append_message(role, sentence["value"]) + conversations.append(conv.get_prompt()) + + # Tokenize conversations + + if has_image: + input_ids = torch.stack( + [ + tokenizer_image_token(prompt, tokenizer, return_tensors="pt") + for prompt in conversations + ], + dim=0, + ) + else: + input_ids = tokenizer( + conversations, + return_tensors="pt", + padding="longest", + max_length=tokenizer.model_max_length, + truncation=True, + ).input_ids + + targets = input_ids.clone() + + assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 + + # Mask targets + sep = "[/INST] " + for conversation, target in zip(conversations, targets): + total_len = int(target.ne(tokenizer.pad_token_id).sum()) + + rounds = conversation.split(conv.sep2) + cur_len = 1 + target[:cur_len] = IGNORE_INDEX + for i, rou in enumerate(rounds): + if rou == "": + break + + parts = rou.split(sep) + if len(parts) != 2: + break + parts[0] += sep + + if has_image: + round_len = len(tokenizer_image_token(rou, tokenizer)) + instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 + else: + round_len = len(tokenizer(rou).input_ids) + instruction_len = len(tokenizer(parts[0]).input_ids) - 2 + + target[cur_len : cur_len + instruction_len] = IGNORE_INDEX + + cur_len += round_len + target[cur_len:] = IGNORE_INDEX + + if cur_len < tokenizer.model_max_length: + if cur_len != total_len: + target[:] = IGNORE_INDEX + print( + f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." + f" (ignored)" + ) + + return dict( + input_ids=input_ids, + labels=targets, + ) + + +def preprocess_v1( + sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False +) -> Dict: + conv = conversation_lib.default_conversation.copy() + roles = {"human": conv.roles[0], "gpt": conv.roles[1]} + + # Apply prompt templates + conversations = [] + for i, source in enumerate(sources): + if roles[source[0]["from"]] != conv.roles[0]: + # Skip the first one if it is not from human + source = source[1:] + + conv.messages = [] + for j, sentence in enumerate(source): + role = roles[sentence["from"]] + assert role == conv.roles[j % 2], f"{i}" + conv.append_message(role, sentence["value"]) + conversations.append(conv.get_prompt()) + + # Tokenize conversations + + if has_image: + input_ids = torch.stack( + [ + tokenizer_image_token(prompt, tokenizer, return_tensors="pt") + for prompt in conversations + ], + dim=0, + ) + else: + input_ids = tokenizer( + conversations, + return_tensors="pt", + padding="longest", + max_length=tokenizer.model_max_length, + truncation=True, + ).input_ids + + targets = input_ids.clone() + + assert conv.sep_style == conversation_lib.SeparatorStyle.TWO + + # Mask targets + sep = conv.sep + conv.roles[1] + ": " + for conversation, target in zip(conversations, targets): + total_len = int(target.ne(tokenizer.pad_token_id).sum()) + + rounds = conversation.split(conv.sep2) + cur_len = 1 + target[:cur_len] = IGNORE_INDEX + for i, rou in enumerate(rounds): + if rou == "": + break + + parts = rou.split(sep) + if len(parts) != 2: + break + parts[0] += sep + + if has_image: + round_len = len(tokenizer_image_token(rou, tokenizer)) + instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 + else: + round_len = len(tokenizer(rou).input_ids) + instruction_len = len(tokenizer(parts[0]).input_ids) - 2 + + target[cur_len : cur_len + instruction_len] = IGNORE_INDEX + + cur_len += round_len + target[cur_len:] = IGNORE_INDEX + + if cur_len < tokenizer.model_max_length: + if cur_len != total_len: + target[:] = IGNORE_INDEX + print( + f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." + f" (ignored)" + ) + + return dict( + input_ids=input_ids, + labels=targets, + ) + + +def preprocess_mpt( + sources, + tokenizer: transformers.PreTrainedTokenizer, +) -> Dict: + conv = conversation_lib.default_conversation.copy() + roles = {"human": conv.roles[0], "gpt": conv.roles[1]} + + # Apply prompt templates + conversations = [] + for i, source in enumerate(sources): + if roles[source[0]["from"]] != conv.roles[0]: + # Skip the first one if it is not from human + source = source[1:] + + conv.messages = [] + for j, sentence in enumerate(source): + role = roles[sentence["from"]] + assert role == conv.roles[j % 2], f"{i}" + conv.append_message(role, sentence["value"]) + conversations.append(conv.get_prompt()) + + # Tokenize conversations + input_ids = torch.stack( + [ + tokenizer_image_token(prompt, tokenizer, return_tensors="pt") + for prompt in conversations + ], + dim=0, + ) + targets = input_ids.clone() + assert conv.sep_style == conversation_lib.SeparatorStyle.MPT + + # Mask targets + sep = conv.sep + conv.roles[1] + for conversation, target in zip(conversations, targets): + total_len = int(target.ne(tokenizer.pad_token_id).sum()) + + rounds = conversation.split(conv.sep) + re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt + for conv_idx in range(3, len(rounds), 2): + re_rounds.append( + conv.sep.join(rounds[conv_idx : conv_idx + 2]) + ) # user + gpt + cur_len = 0 + target[:cur_len] = IGNORE_INDEX + for i, rou in enumerate(re_rounds): + if rou == "": + break + + parts = rou.split(sep) + if len(parts) != 2: + break + parts[0] += sep + round_len = len(tokenizer_image_token(rou, tokenizer)) + len( + tokenizer_image_token(conv.sep, tokenizer) + ) + instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) + target[cur_len : cur_len + instruction_len] = IGNORE_INDEX + + cur_len += round_len + target[cur_len:] = IGNORE_INDEX + + if cur_len < tokenizer.model_max_length: + if cur_len != total_len: + target[:] = IGNORE_INDEX + print( + f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." + f" (ignored)" + ) + + return dict( + input_ids=input_ids, + labels=targets, + ) + + +def preprocess_plain( + sources: Sequence[str], + tokenizer: transformers.PreTrainedTokenizer, +) -> Dict: + # add end signal and concatenate together + conversations = [] + for source in sources: + assert len(source) == 2 + assert DEFAULT_IMAGE_TOKEN in source[0]["value"] + source[0]["value"] = DEFAULT_IMAGE_TOKEN + conversation = ( + source[0]["value"] + + source[1]["value"] + + conversation_lib.default_conversation.sep + ) + conversations.append(conversation) + # tokenize conversations + input_ids = [ + tokenizer_image_token(prompt, tokenizer, return_tensors="pt") + for prompt in conversations + ] + targets = copy.deepcopy(input_ids) + for target, source in zip(targets, sources): + tokenized_len = len(tokenizer_image_token(source[0]["value"], tokenizer)) + target[:tokenized_len] = IGNORE_INDEX + + return dict(input_ids=input_ids, labels=targets) + + +def preprocess( + sources: Sequence[str], + tokenizer: transformers.PreTrainedTokenizer, + has_image: bool = False, +) -> Dict: + """ + Given a list of sources, each is a conversation list. This transform: + 1. Add signal '### ' at the beginning each sentence, with end signal '\n'; + 2. Concatenate conversations together; + 3. Tokenize the concatenated conversation; + 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. + """ + if ( + conversation_lib.default_conversation.sep_style + == conversation_lib.SeparatorStyle.PLAIN + ): + return preprocess_plain(sources, tokenizer) + if ( + conversation_lib.default_conversation.sep_style + == conversation_lib.SeparatorStyle.LLAMA_2 + ): + return preprocess_llama_2(sources, tokenizer, has_image=has_image) + if conversation_lib.default_conversation.version.startswith("v1"): + return preprocess_v1(sources, tokenizer, has_image=has_image) + if conversation_lib.default_conversation.version == "mpt": + return preprocess_mpt(sources, tokenizer) + # add end signal and concatenate together + conversations = [] + for source in sources: + header = f"{conversation_lib.default_conversation.system}\n\n" + conversation = _add_speaker_and_signal(header, source) + conversations.append(conversation) + + # tokenize conversations + def get_tokenize_len(prompts): + return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] + + if has_image: + input_ids = [ + tokenizer_image_token(prompt, tokenizer, return_tensors="pt") + for prompt in conversations + ] + else: + conversations_tokenized = _tokenize_fn(conversations, tokenizer) + input_ids = conversations_tokenized["input_ids"] + + targets = copy.deepcopy(input_ids) + for target, source in zip(targets, sources): + if has_image: + tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) + else: + tokenized_lens = _tokenize_fn( + [header] + [s["value"] for s in source], tokenizer + )["input_ids_lens"] + speakers = [sentence["from"] for sentence in source] + _mask_targets(target, tokenized_lens, speakers) + + return dict(input_ids=input_ids, labels=targets) + + +class LazySupervisedDataset(Dataset): + """Dataset for supervised fine-tuning.""" + + def __init__( + self, + data_path: str, + tokenizer: transformers.PreTrainedTokenizer, + data_args: DataArguments, + ): + super(LazySupervisedDataset, self).__init__() + list_data_dict = json.load(open(data_path, "r")) + + rank0_print("Formatting inputs...Skip in lazy mode") + self.tokenizer = tokenizer + self.list_data_dict = list_data_dict + self.data_args = data_args + + def __len__(self): + return len(self.list_data_dict) + + def __getitem__(self, i) -> Dict[str, torch.Tensor]: + sources = self.list_data_dict[i] + if isinstance(i, int): + sources = [sources] + assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME + if "image" in sources[0]: + image_file = self.list_data_dict[i]["image"] + image_folder = self.data_args.image_folder + processor = self.data_args.image_processor + image = Image.open(os.path.join(image_folder, image_file)).convert("RGB") + if self.data_args.image_aspect_ratio == "pad": + + def expand2square(pil_img, background_color): + width, height = pil_img.size + if width == height: + return pil_img + elif width > height: + result = Image.new( + pil_img.mode, (width, width), background_color + ) + result.paste(pil_img, (0, (width - height) // 2)) + return result + else: + result = Image.new( + pil_img.mode, (height, height), background_color + ) + result.paste(pil_img, ((height - width) // 2, 0)) + return result + + image = expand2square( + image, tuple(int(x * 255) for x in processor.image_mean) + ) + image = processor.preprocess(image, return_tensors="pt")[ + "pixel_values" + ][0] + else: + image = processor.preprocess(image, return_tensors="pt")[ + "pixel_values" + ][0] + sources = preprocess_multimodal( + copy.deepcopy([e["conversations"] for e in sources]), self.data_args + ) + else: + sources = copy.deepcopy([e["conversations"] for e in sources]) + data_dict = preprocess( + sources, self.tokenizer, has_image=("image" in self.list_data_dict[i]) + ) + if isinstance(i, int): + data_dict = dict( + input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0] + ) + + # image exist in the data + if "image" in self.list_data_dict[i]: + data_dict["image"] = image + elif self.data_args.is_multimodal: + # image does not exist in the data, but the model is multimodal + crop_size = self.data_args.image_processor.crop_size + data_dict["image"] = torch.zeros(3, crop_size["height"], crop_size["width"]) + return data_dict + + +@dataclass +class DataCollatorForSupervisedDataset(object): + """Collate examples for supervised fine-tuning.""" + + tokenizer: transformers.PreTrainedTokenizer + + def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: + input_ids, labels = tuple( + [instance[key] for instance in instances] for key in ("input_ids", "labels") + ) + input_ids = torch.nn.utils.rnn.pad_sequence( + input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id + ) + labels = torch.nn.utils.rnn.pad_sequence( + labels, batch_first=True, padding_value=IGNORE_INDEX + ) + input_ids = input_ids[:, : self.tokenizer.model_max_length] + labels = labels[:, : self.tokenizer.model_max_length] + batch = dict( + input_ids=input_ids, + labels=labels, + attention_mask=input_ids.ne(self.tokenizer.pad_token_id), + ) + + if "image" in instances[0]: + images = [instance["image"] for instance in instances] + if all(x is not None and x.shape == images[0].shape for x in images): + batch["images"] = torch.stack(images) + else: + batch["images"] = images + + return batch + + +def make_supervised_data_module( + tokenizer: transformers.PreTrainedTokenizer, data_args +) -> Dict: + """Make dataset and collator for supervised fine-tuning.""" + train_dataset = LazySupervisedDataset( + tokenizer=tokenizer, data_path=data_args.data_path, data_args=data_args + ) + data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) + return dict( + train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator + ) + + +def train(): + global local_rank + + parser = transformers.HfArgumentParser( + (ModelArguments, DataArguments, TrainingArguments) + ) + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + local_rank = training_args.local_rank + compute_dtype = ( + torch.float16 + if training_args.fp16 + else (torch.bfloat16 if training_args.bf16 else torch.float32) + ) + + bnb_model_from_pretrained_args = {} + if training_args.bits in [4, 8]: + from transformers import BitsAndBytesConfig + + bnb_model_from_pretrained_args.update( + dict( + device_map={"": training_args.device}, + load_in_4bit=training_args.bits == 4, + load_in_8bit=training_args.bits == 8, + quantization_config=BitsAndBytesConfig( + load_in_4bit=training_args.bits == 4, + load_in_8bit=training_args.bits == 8, + llm_int8_threshold=6.0, + llm_int8_has_fp16_weight=False, + bnb_4bit_compute_dtype=compute_dtype, + bnb_4bit_use_double_quant=training_args.double_quant, + bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'} + ), + ) + ) + + if model_args.vision_tower is not None: + if "mpt" in model_args.model_name_or_path: + config = transformers.AutoConfig.from_pretrained( + model_args.model_name_or_path, trust_remote_code=True + ) + config.attn_config["attn_impl"] = training_args.mpt_attn_impl + model = LlavaMPTForCausalLM.from_pretrained( + model_args.model_name_or_path, + config=config, + cache_dir=training_args.cache_dir, + **bnb_model_from_pretrained_args, + ) + else: + model = LlavaLlamaForCausalLM.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + **bnb_model_from_pretrained_args, + ) + else: + model = transformers.LlamaForCausalLM.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + **bnb_model_from_pretrained_args, + ) + model.config.use_cache = False + + if model_args.freeze_backbone: + model.model.requires_grad_(False) + + if training_args.bits in [4, 8]: + from peft import prepare_model_for_kbit_training + + model.config.torch_dtype = ( + torch.float32 + if training_args.fp16 + else (torch.bfloat16 if training_args.bf16 else torch.float32) + ) + model = prepare_model_for_kbit_training( + model, use_gradient_checkpointing=training_args.gradient_checkpointing + ) + + if training_args.gradient_checkpointing: + if hasattr(model, "enable_input_require_grads"): + model.enable_input_require_grads() + else: + + def make_inputs_require_grad(module, input, output): + output.requires_grad_(True) + + model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) + + if training_args.lora_enable: + from peft import LoraConfig, get_peft_model + + lora_config = LoraConfig( + r=training_args.lora_r, + lora_alpha=training_args.lora_alpha, + target_modules=find_all_linear_names(model), + lora_dropout=training_args.lora_dropout, + bias=training_args.lora_bias, + task_type="CAUSAL_LM", + ) + if training_args.bits == 16: + if training_args.bf16: + model.to(torch.bfloat16) + if training_args.fp16: + model.to(torch.float16) + rank0_print("Adding LoRA adapters...") + model = get_peft_model(model, lora_config) + + if "mpt" in model_args.model_name_or_path: + tokenizer = transformers.AutoTokenizer.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + model_max_length=training_args.model_max_length, + padding_side="right", + ) + else: + tokenizer = transformers.AutoTokenizer.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + model_max_length=training_args.model_max_length, + padding_side="right", + use_fast=False, + ) + + if model_args.version == "v0": + if tokenizer.pad_token is None: + smart_tokenizer_and_embedding_resize( + special_tokens_dict=dict(pad_token="[PAD]"), + tokenizer=tokenizer, + model=model, + ) + elif model_args.version == "v0.5": + tokenizer.pad_token = tokenizer.unk_token + else: + tokenizer.pad_token = tokenizer.unk_token + if model_args.version in conversation_lib.conv_templates: + conversation_lib.default_conversation = conversation_lib.conv_templates[ + model_args.version + ] + else: + conversation_lib.default_conversation = conversation_lib.conv_templates[ + "vicuna_v1" + ] + + if model_args.vision_tower is not None: + model.get_model().initialize_vision_modules( + model_args=model_args, fsdp=training_args.fsdp + ) + + vision_tower = model.get_vision_tower() + vision_tower.to(dtype=torch.float16, device=training_args.device) + + data_args.image_processor = vision_tower.image_processor + data_args.is_multimodal = True + + model.config.image_aspect_ratio = data_args.image_aspect_ratio + model.config.image_grid_pinpoints = data_args.image_grid_pinpoints + + model.config.tune_mm_mlp_adapter = ( + training_args.tune_mm_mlp_adapter + ) = model_args.tune_mm_mlp_adapter + if model_args.tune_mm_mlp_adapter: + model.requires_grad_(False) + for p in model.get_model().mm_projector.parameters(): + p.requires_grad = True + + model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter + if training_args.freeze_mm_mlp_adapter: + for p in model.get_model().mm_projector.parameters(): + p.requires_grad = False + + if training_args.bits in [4, 8]: + model.get_model().mm_projector.to( + dtype=compute_dtype, device=training_args.device + ) + + model.config.mm_use_im_start_end = ( + data_args.mm_use_im_start_end + ) = model_args.mm_use_im_start_end + training_args.use_im_start_end = model_args.mm_use_im_start_end + model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token + model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) + + if training_args.bits in [4, 8]: + from peft.tuners.lora import LoraLayer + + for name, module in model.named_modules(): + if isinstance(module, LoraLayer): + if training_args.bf16: + module = module.to(torch.bfloat16) + if "norm" in name: + module = module.to(torch.float32) + if "lm_head" in name or "embed_tokens" in name: + if hasattr(module, "weight"): + if training_args.bf16 and module.weight.dtype == torch.float32: + module = module.to(torch.bfloat16) + + data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) + trainer = LLaVATrainer( + model=model, tokenizer=tokenizer, args=training_args, **data_module + ) + + if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): + trainer.train(resume_from_checkpoint=True) + else: + trainer.train() + trainer.save_state() + + model.config.use_cache = True + + if training_args.lora_enable: + state_dict = get_peft_state_maybe_zero_3( + model.named_parameters(), training_args.lora_bias + ) + non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( + model.named_parameters() + ) + if training_args.local_rank == 0 or training_args.local_rank == -1: + model.config.save_pretrained(training_args.output_dir) + model.save_pretrained(training_args.output_dir, state_dict=state_dict) + torch.save( + non_lora_state_dict, + os.path.join(training_args.output_dir, "non_lora_trainables.bin"), + ) + else: + safe_save_model_for_hf_trainer( + trainer=trainer, output_dir=training_args.output_dir + ) + + +if __name__ == "__main__": + train() diff --git a/lisa_on_cuda/llava/train/train_mem.py b/lisa_on_cuda/llava/train/train_mem.py new file mode 100755 index 0000000000000000000000000000000000000000..2f4e94b5b0a23c13f0d1d7906a6b0136c5f3ffbd --- /dev/null +++ b/lisa_on_cuda/llava/train/train_mem.py @@ -0,0 +1,14 @@ +# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: +# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: +# Make it more memory efficient by monkey patching the LLaMA model with FlashAttn. + +# Need to call this before importing transformers. +from .llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn + +replace_llama_attn_with_flash_attn() + +from .train import train + + +if __name__ == "__main__": + train() diff --git a/lisa_on_cuda/llava/utils.py b/lisa_on_cuda/llava/utils.py new file mode 100755 index 0000000000000000000000000000000000000000..b1527d0c82db1a0aa0f5a34c742865e8b3828bed --- /dev/null +++ b/lisa_on_cuda/llava/utils.py @@ -0,0 +1,134 @@ +import datetime +import logging +import logging.handlers +import os +import sys + +import requests +from .constants import LOGDIR + +server_error_msg = ( + "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" +) +moderation_msg = ( + "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN." +) + +handler = None + + +def build_logger(logger_name, logger_filename): + global handler + + formatter = logging.Formatter( + fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", + datefmt="%Y-%m-%d %H:%M:%S", + ) + + # Set the format of root handlers + if not logging.getLogger().handlers: + logging.basicConfig(level=logging.INFO) + logging.getLogger().handlers[0].setFormatter(formatter) + + # Redirect stdout and stderr to loggers + stdout_logger = logging.getLogger("stdout") + stdout_logger.setLevel(logging.INFO) + sl = StreamToLogger(stdout_logger, logging.INFO) + sys.stdout = sl + + stderr_logger = logging.getLogger("stderr") + stderr_logger.setLevel(logging.ERROR) + sl = StreamToLogger(stderr_logger, logging.ERROR) + sys.stderr = sl + + # Get logger + logger = logging.getLogger(logger_name) + logger.setLevel(logging.INFO) + + # Add a file handler for all loggers + if handler is None: + os.makedirs(LOGDIR, exist_ok=True) + filename = os.path.join(LOGDIR, logger_filename) + handler = logging.handlers.TimedRotatingFileHandler( + filename, when="D", utc=True + ) + handler.setFormatter(formatter) + + for name, item in logging.root.manager.loggerDict.items(): + if isinstance(item, logging.Logger): + item.addHandler(handler) + + return logger + + +class StreamToLogger(object): + """ + Fake file-like stream object that redirects writes to a logger instance. + """ + + def __init__(self, logger, log_level=logging.INFO): + self.terminal = sys.stdout + self.logger = logger + self.log_level = log_level + self.linebuf = "" + + def __getattr__(self, attr): + return getattr(self.terminal, attr) + + def write(self, buf): + temp_linebuf = self.linebuf + buf + self.linebuf = "" + for line in temp_linebuf.splitlines(True): + # From the io.TextIOWrapper docs: + # On output, if newline is None, any '\n' characters written + # are translated to the system default line separator. + # By default sys.stdout.write() expects '\n' newlines and then + # translates them so this is still cross platform. + if line[-1] == "\n": + self.logger.log(self.log_level, line.rstrip()) + else: + self.linebuf += line + + def flush(self): + if self.linebuf != "": + self.logger.log(self.log_level, self.linebuf.rstrip()) + self.linebuf = "" + + +def disable_torch_init(): + """ + Disable the redundant torch default initialization to accelerate model creation. + """ + import torch + + setattr(torch.nn.Linear, "reset_parameters", lambda self: None) + setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) + + +def violates_moderation(text): + """ + Check whether the text violates OpenAI moderation API. + """ + url = "https://api.openai.com/v1/moderations" + headers = { + "Content-Type": "application/json", + "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"], + } + text = text.replace("\n", "") + data = "{" + '"input": ' + f'"{text}"' + "}" + data = data.encode("utf-8") + try: + ret = requests.post(url, headers=headers, data=data, timeout=5) + flagged = ret.json()["results"][0]["flagged"] + except requests.exceptions.RequestException as e: + flagged = False + except KeyError as e: + flagged = False + + return flagged + + +def pretty_print_semaphore(semaphore): + if semaphore is None: + return "None" + return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})" diff --git a/lisa_on_cuda/routes.py b/lisa_on_cuda/routes.py new file mode 100644 index 0000000000000000000000000000000000000000..a6a352e089fa0f1046ff94241143f205c6f68f5f --- /dev/null +++ b/lisa_on_cuda/routes.py @@ -0,0 +1,21 @@ +import json + +from fastapi import APIRouter + +from lisa_on_cuda import app_logger + + +router = APIRouter() + + +@router.get("/health") +def health() -> str: + try: + from samgis_core.__version__ import __version__ as version_core + from gradio import __version__ as gradio_version + + app_logger.info(f"still alive, gradio_version:{gradio_version}, version_core:{version_core}.") + return json.dumps({"msg": "lisa on cuda: still alive..."}) + except Exception as e: + app_logger.error(f"exception:{e}.") + return json.dumps({"msg": "request failed"}) diff --git a/lisa_on_cuda/segment_anything/__init__.py b/lisa_on_cuda/segment_anything/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..e66218b2edd8754f1546ad1dca8b604ce891c365 --- /dev/null +++ b/lisa_on_cuda/segment_anything/__init__.py @@ -0,0 +1,10 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from .automatic_mask_generator import SamAutomaticMaskGenerator +from .build_sam import (build_sam, build_sam_vit_b, build_sam_vit_h, + build_sam_vit_l, sam_model_registry) +from .predictor import SamPredictor diff --git a/lisa_on_cuda/segment_anything/automatic_mask_generator.py b/lisa_on_cuda/segment_anything/automatic_mask_generator.py new file mode 100755 index 0000000000000000000000000000000000000000..aa4bc4f0324cf7f91ded55a0993b51deeec41537 --- /dev/null +++ b/lisa_on_cuda/segment_anything/automatic_mask_generator.py @@ -0,0 +1,372 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Any, Dict, List, Optional, Tuple + +import numpy as np +import torch +from torchvision.ops.boxes import batched_nms, box_area # type: ignore + +from .modeling import Sam +from .predictor import SamPredictor +from .utils.amg import (MaskData, area_from_rle, batch_iterator, + batched_mask_to_box, box_xyxy_to_xywh, + build_all_layer_point_grids, calculate_stability_score, + coco_encode_rle, generate_crop_boxes, + is_box_near_crop_edge, mask_to_rle_pytorch, + remove_small_regions, rle_to_mask, uncrop_boxes_xyxy, + uncrop_masks, uncrop_points) + + +class SamAutomaticMaskGenerator: + def __init__( + self, + model: Sam, + points_per_side: Optional[int] = 32, + points_per_batch: int = 64, + pred_iou_thresh: float = 0.88, + stability_score_thresh: float = 0.95, + stability_score_offset: float = 1.0, + box_nms_thresh: float = 0.7, + crop_n_layers: int = 0, + crop_nms_thresh: float = 0.7, + crop_overlap_ratio: float = 512 / 1500, + crop_n_points_downscale_factor: int = 1, + point_grids: Optional[List[np.ndarray]] = None, + min_mask_region_area: int = 0, + output_mode: str = "binary_mask", + ) -> None: + """ + Using a SAM model, generates masks for the entire image. + Generates a grid of point prompts over the image, then filters + low quality and duplicate masks. The default settings are chosen + for SAM with a ViT-H backbone. + + Arguments: + model (Sam): The SAM model to use for mask prediction. + points_per_side (int or None): The number of points to be sampled + along one side of the image. The total number of points is + points_per_side**2. If None, 'point_grids' must provide explicit + point sampling. + points_per_batch (int): Sets the number of points run simultaneously + by the model. Higher numbers may be faster but use more GPU memory. + pred_iou_thresh (float): A filtering threshold in [0,1], using the + model's predicted mask quality. + stability_score_thresh (float): A filtering threshold in [0,1], using + the stability of the mask under changes to the cutoff used to binarize + the model's mask predictions. + stability_score_offset (float): The amount to shift the cutoff when + calculated the stability score. + box_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks. + crop_n_layers (int): If >0, mask prediction will be run again on + crops of the image. Sets the number of layers to run, where each + layer has 2**i_layer number of image crops. + crop_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks between different crops. + crop_overlap_ratio (float): Sets the degree to which crops overlap. + In the first crop layer, crops will overlap by this fraction of + the image length. Later layers with more crops scale down this overlap. + crop_n_points_downscale_factor (int): The number of points-per-side + sampled in layer n is scaled down by crop_n_points_downscale_factor**n. + point_grids (list(np.ndarray) or None): A list over explicit grids + of points used for sampling, normalized to [0,1]. The nth grid in the + list is used in the nth crop layer. Exclusive with points_per_side. + min_mask_region_area (int): If >0, postprocessing will be applied + to remove disconnected regions and holes in masks with area smaller + than min_mask_region_area. Requires opencv. + output_mode (str): The form masks are returned in. Can be 'binary_mask', + 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. + For large resolutions, 'binary_mask' may consume large amounts of + memory. + """ + + assert (points_per_side is None) != ( + point_grids is None + ), "Exactly one of points_per_side or point_grid must be provided." + if points_per_side is not None: + self.point_grids = build_all_layer_point_grids( + points_per_side, + crop_n_layers, + crop_n_points_downscale_factor, + ) + elif point_grids is not None: + self.point_grids = point_grids + else: + raise ValueError("Can't have both points_per_side and point_grid be None.") + + assert output_mode in [ + "binary_mask", + "uncompressed_rle", + "coco_rle", + ], f"Unknown output_mode {output_mode}." + if output_mode == "coco_rle": + from pycocotools import \ + mask as mask_utils # type: ignore # noqa: F401 + + if min_mask_region_area > 0: + import cv2 # type: ignore # noqa: F401 + + self.predictor = SamPredictor(model) + self.points_per_batch = points_per_batch + self.pred_iou_thresh = pred_iou_thresh + self.stability_score_thresh = stability_score_thresh + self.stability_score_offset = stability_score_offset + self.box_nms_thresh = box_nms_thresh + self.crop_n_layers = crop_n_layers + self.crop_nms_thresh = crop_nms_thresh + self.crop_overlap_ratio = crop_overlap_ratio + self.crop_n_points_downscale_factor = crop_n_points_downscale_factor + self.min_mask_region_area = min_mask_region_area + self.output_mode = output_mode + + @torch.no_grad() + def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: + """ + Generates masks for the given image. + + Arguments: + image (np.ndarray): The image to generate masks for, in HWC uint8 format. + + Returns: + list(dict(str, any)): A list over records for masks. Each record is + a dict containing the following keys: + segmentation (dict(str, any) or np.ndarray): The mask. If + output_mode='binary_mask', is an array of shape HW. Otherwise, + is a dictionary containing the RLE. + bbox (list(float)): The box around the mask, in XYWH format. + area (int): The area in pixels of the mask. + predicted_iou (float): The model's own prediction of the mask's + quality. This is filtered by the pred_iou_thresh parameter. + point_coords (list(list(float))): The point coordinates input + to the model to generate this mask. + stability_score (float): A measure of the mask's quality. This + is filtered on using the stability_score_thresh parameter. + crop_box (list(float)): The crop of the image used to generate + the mask, given in XYWH format. + """ + + # Generate masks + mask_data = self._generate_masks(image) + + # Filter small disconnected regions and holes in masks + if self.min_mask_region_area > 0: + mask_data = self.postprocess_small_regions( + mask_data, + self.min_mask_region_area, + max(self.box_nms_thresh, self.crop_nms_thresh), + ) + + # Encode masks + if self.output_mode == "coco_rle": + mask_data["segmentations"] = [ + coco_encode_rle(rle) for rle in mask_data["rles"] + ] + elif self.output_mode == "binary_mask": + mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]] + else: + mask_data["segmentations"] = mask_data["rles"] + + # Write mask records + curr_anns = [] + for idx in range(len(mask_data["segmentations"])): + ann = { + "segmentation": mask_data["segmentations"][idx], + "area": area_from_rle(mask_data["rles"][idx]), + "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(), + "predicted_iou": mask_data["iou_preds"][idx].item(), + "point_coords": [mask_data["points"][idx].tolist()], + "stability_score": mask_data["stability_score"][idx].item(), + "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(), + } + curr_anns.append(ann) + + return curr_anns + + def _generate_masks(self, image: np.ndarray) -> MaskData: + orig_size = image.shape[:2] + crop_boxes, layer_idxs = generate_crop_boxes( + orig_size, self.crop_n_layers, self.crop_overlap_ratio + ) + + # Iterate over image crops + data = MaskData() + for crop_box, layer_idx in zip(crop_boxes, layer_idxs): + crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) + data.cat(crop_data) + + # Remove duplicate masks between crops + if len(crop_boxes) > 1: + # Prefer masks from smaller crops + scores = 1 / box_area(data["crop_boxes"]) + scores = scores.to(data["boxes"].device) + keep_by_nms = batched_nms( + data["boxes"].float(), + scores, + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.crop_nms_thresh, + ) + data.filter(keep_by_nms) + + data.to_numpy() + return data + + def _process_crop( + self, + image: np.ndarray, + crop_box: List[int], + crop_layer_idx: int, + orig_size: Tuple[int, ...], + ) -> MaskData: + # Crop the image and calculate embeddings + x0, y0, x1, y1 = crop_box + cropped_im = image[y0:y1, x0:x1, :] + cropped_im_size = cropped_im.shape[:2] + self.predictor.set_image(cropped_im) + + # Get points for this crop + points_scale = np.array(cropped_im_size)[None, ::-1] + points_for_image = self.point_grids[crop_layer_idx] * points_scale + + # Generate masks for this crop in batches + data = MaskData() + for (points,) in batch_iterator(self.points_per_batch, points_for_image): + batch_data = self._process_batch( + points, cropped_im_size, crop_box, orig_size + ) + data.cat(batch_data) + del batch_data + self.predictor.reset_image() + + # Remove duplicates within this crop. + keep_by_nms = batched_nms( + data["boxes"].float(), + data["iou_preds"], + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.box_nms_thresh, + ) + data.filter(keep_by_nms) + + # Return to the original image frame + data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box) + data["points"] = uncrop_points(data["points"], crop_box) + data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))]) + + return data + + def _process_batch( + self, + points: np.ndarray, + im_size: Tuple[int, ...], + crop_box: List[int], + orig_size: Tuple[int, ...], + ) -> MaskData: + orig_h, orig_w = orig_size + + # Run model on this batch + transformed_points = self.predictor.transform.apply_coords(points, im_size) + in_points = torch.as_tensor(transformed_points, device=self.predictor.device) + in_labels = torch.ones( + in_points.shape[0], dtype=torch.int, device=in_points.device + ) + masks, iou_preds, _ = self.predictor.predict_torch( + in_points[:, None, :], + in_labels[:, None], + multimask_output=True, + return_logits=True, + ) + + # Serialize predictions and store in MaskData + data = MaskData( + masks=masks.flatten(0, 1), + iou_preds=iou_preds.flatten(0, 1), + points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)), + ) + del masks + + # Filter by predicted IoU + if self.pred_iou_thresh > 0.0: + keep_mask = data["iou_preds"] > self.pred_iou_thresh + data.filter(keep_mask) + + # Calculate stability score + data["stability_score"] = calculate_stability_score( + data["masks"], + self.predictor.model.mask_threshold, + self.stability_score_offset, + ) + if self.stability_score_thresh > 0.0: + keep_mask = data["stability_score"] >= self.stability_score_thresh + data.filter(keep_mask) + + # Threshold masks and calculate boxes + data["masks"] = data["masks"] > self.predictor.model.mask_threshold + data["boxes"] = batched_mask_to_box(data["masks"]) + + # Filter boxes that touch crop boundaries + keep_mask = ~is_box_near_crop_edge( + data["boxes"], crop_box, [0, 0, orig_w, orig_h] + ) + if not torch.all(keep_mask): + data.filter(keep_mask) + + # Compress to RLE + data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w) + data["rles"] = mask_to_rle_pytorch(data["masks"]) + del data["masks"] + + return data + + @staticmethod + def postprocess_small_regions( + mask_data: MaskData, min_area: int, nms_thresh: float + ) -> MaskData: + """ + Removes small disconnected regions and holes in masks, then reruns + box NMS to remove any new duplicates. + + Edits mask_data in place. + + Requires open-cv as a dependency. + """ + if len(mask_data["rles"]) == 0: + return mask_data + + # Filter small disconnected regions and holes + new_masks = [] + scores = [] + for rle in mask_data["rles"]: + mask = rle_to_mask(rle) + + mask, changed = remove_small_regions(mask, min_area, mode="holes") + unchanged = not changed + mask, changed = remove_small_regions(mask, min_area, mode="islands") + unchanged = unchanged and not changed + + new_masks.append(torch.as_tensor(mask).unsqueeze(0)) + # Give score=0 to changed masks and score=1 to unchanged masks + # so NMS will prefer ones that didn't need postprocessing + scores.append(float(unchanged)) + + # Recalculate boxes and remove any new duplicates + masks = torch.cat(new_masks, dim=0) + boxes = batched_mask_to_box(masks) + keep_by_nms = batched_nms( + boxes.float(), + torch.as_tensor(scores), + torch.zeros_like(boxes[:, 0]), # categories + iou_threshold=nms_thresh, + ) + + # Only recalculate RLEs for masks that have changed + for i_mask in keep_by_nms: + if scores[i_mask] == 0.0: + mask_torch = masks[i_mask].unsqueeze(0) + mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0] + mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly + mask_data.filter(keep_by_nms) + + return mask_data diff --git a/lisa_on_cuda/segment_anything/build_sam.py b/lisa_on_cuda/segment_anything/build_sam.py new file mode 100755 index 0000000000000000000000000000000000000000..788d25ad5a6fd32c112201301b320f5884d6e8e8 --- /dev/null +++ b/lisa_on_cuda/segment_anything/build_sam.py @@ -0,0 +1,108 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from functools import partial + +import torch + +from .modeling import (ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, + TwoWayTransformer) + + +def build_sam_vit_h(checkpoint=None): + return _build_sam( + encoder_embed_dim=1280, + encoder_depth=32, + encoder_num_heads=16, + encoder_global_attn_indexes=[7, 15, 23, 31], + checkpoint=checkpoint, + ) + + +build_sam = build_sam_vit_h + + +def build_sam_vit_l(checkpoint=None): + return _build_sam( + encoder_embed_dim=1024, + encoder_depth=24, + encoder_num_heads=16, + encoder_global_attn_indexes=[5, 11, 17, 23], + checkpoint=checkpoint, + ) + + +def build_sam_vit_b(checkpoint=None): + return _build_sam( + encoder_embed_dim=768, + encoder_depth=12, + encoder_num_heads=12, + encoder_global_attn_indexes=[2, 5, 8, 11], + checkpoint=checkpoint, + ) + + +sam_model_registry = { + "default": build_sam_vit_h, + "vit_h": build_sam_vit_h, + "vit_l": build_sam_vit_l, + "vit_b": build_sam_vit_b, +} + + +def _build_sam( + encoder_embed_dim, + encoder_depth, + encoder_num_heads, + encoder_global_attn_indexes, + checkpoint=None, +): + prompt_embed_dim = 256 + image_size = 1024 + vit_patch_size = 16 + image_embedding_size = image_size // vit_patch_size + sam = Sam( + image_encoder=ImageEncoderViT( + depth=encoder_depth, + embed_dim=encoder_embed_dim, + img_size=image_size, + mlp_ratio=4, + norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), + num_heads=encoder_num_heads, + patch_size=vit_patch_size, + qkv_bias=True, + use_rel_pos=True, + global_attn_indexes=encoder_global_attn_indexes, + window_size=14, + out_chans=prompt_embed_dim, + ), + prompt_encoder=PromptEncoder( + embed_dim=prompt_embed_dim, + image_embedding_size=(image_embedding_size, image_embedding_size), + input_image_size=(image_size, image_size), + mask_in_chans=16, + ), + mask_decoder=MaskDecoder( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=prompt_embed_dim, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=prompt_embed_dim, + iou_head_depth=3, + iou_head_hidden_dim=256, + ), + pixel_mean=[123.675, 116.28, 103.53], + pixel_std=[58.395, 57.12, 57.375], + ) + sam.eval() + if checkpoint is not None: + with open(checkpoint, "rb") as f: + state_dict = torch.load(f) + sam.load_state_dict(state_dict, strict=False) + return sam diff --git a/lisa_on_cuda/segment_anything/modeling/__init__.py b/lisa_on_cuda/segment_anything/modeling/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..088af386e5b45d14e99d11dec132821ddba5df39 --- /dev/null +++ b/lisa_on_cuda/segment_anything/modeling/__init__.py @@ -0,0 +1,11 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from .image_encoder import ImageEncoderViT +from .mask_decoder import MaskDecoder +from .prompt_encoder import PromptEncoder +from .sam import Sam +from .transformer import TwoWayTransformer diff --git a/lisa_on_cuda/segment_anything/modeling/common.py b/lisa_on_cuda/segment_anything/modeling/common.py new file mode 100755 index 0000000000000000000000000000000000000000..e8727816d4861a2d0c7c367879951d1d4fa791fb --- /dev/null +++ b/lisa_on_cuda/segment_anything/modeling/common.py @@ -0,0 +1,43 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Type + +import torch +import torch.nn as nn + + +class MLPBlock(nn.Module): + def __init__( + self, + embedding_dim: int, + mlp_dim: int, + act: Type[nn.Module] = nn.GELU, + ) -> None: + super().__init__() + self.lin1 = nn.Linear(embedding_dim, mlp_dim) + self.lin2 = nn.Linear(mlp_dim, embedding_dim) + self.act = act() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.lin2(self.act(self.lin1(x))) + + +# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa +# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa +class LayerNorm2d(nn.Module): + def __init__(self, num_channels: int, eps: float = 1e-6) -> None: + super().__init__() + self.weight = nn.Parameter(torch.ones(num_channels)) + self.bias = nn.Parameter(torch.zeros(num_channels)) + self.eps = eps + + def forward(self, x: torch.Tensor) -> torch.Tensor: + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x diff --git a/lisa_on_cuda/segment_anything/modeling/image_encoder.py b/lisa_on_cuda/segment_anything/modeling/image_encoder.py new file mode 100755 index 0000000000000000000000000000000000000000..b472a3d6b7a609134afe18d7f8740e0c01a56842 --- /dev/null +++ b/lisa_on_cuda/segment_anything/modeling/image_encoder.py @@ -0,0 +1,426 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Optional, Tuple, Type + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .common import LayerNorm2d, MLPBlock + + +# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa +class ImageEncoderViT(nn.Module): + def __init__( + self, + img_size: int = 1024, + patch_size: int = 16, + in_chans: int = 3, + embed_dim: int = 768, + depth: int = 12, + num_heads: int = 12, + mlp_ratio: float = 4.0, + out_chans: int = 256, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_abs_pos: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + global_attn_indexes: Tuple[int, ...] = (), + ) -> None: + """ + Args: + img_size (int): Input image size. + patch_size (int): Patch size. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + depth (int): Depth of ViT. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_abs_pos (bool): If True, use absolute positional embeddings. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. + global_attn_indexes (list): Indexes for blocks using global attention. + """ + super().__init__() + self.img_size = img_size + self.embed_dim = embed_dim + self.out_chans = out_chans + + self.patch_embed = PatchEmbed( + kernel_size=(patch_size, patch_size), + stride=(patch_size, patch_size), + in_chans=in_chans, + embed_dim=embed_dim, + ) + + self.pos_embed: Optional[nn.Parameter] = None + if use_abs_pos: + # Initialize absolute positional embedding with pretrain image size. + self.pos_embed = nn.Parameter( + torch.zeros( + 1, img_size // patch_size, img_size // patch_size, embed_dim + ) + ) + + self.blocks = nn.ModuleList() + for i in range(depth): + block = Block( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + norm_layer=norm_layer, + act_layer=act_layer, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + window_size=window_size if i not in global_attn_indexes else 0, + input_size=(img_size // patch_size, img_size // patch_size), + ) + self.blocks.append(block) + + self.neck = nn.Sequential( + nn.Conv2d( + embed_dim, + out_chans, + kernel_size=1, + bias=False, + ), + LayerNorm2d(out_chans), + nn.Conv2d( + out_chans, + out_chans, + kernel_size=3, + padding=1, + bias=False, + ), + LayerNorm2d(out_chans), + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.patch_embed(x) + if self.pos_embed is not None: + x = x + self.pos_embed + + for blk in self.blocks: + x = blk(x) + + dtype = x.dtype + if dtype == torch.float16: # prevent overflow + with torch.autocast(device_type="cuda", dtype=torch.float32): + x = self.neck(x.permute(0, 3, 1, 2)) + x = x.to(dtype) + else: + x = self.neck(x.permute(0, 3, 1, 2)) + return x + + +class Block(nn.Module): + """Transformer blocks with support of window attention and residual propagation blocks""" + + def __init__( + self, + dim: int, + num_heads: int, + mlp_ratio: float = 4.0, + qkv_bias: bool = True, + norm_layer: Type[nn.Module] = nn.LayerNorm, + act_layer: Type[nn.Module] = nn.GELU, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + window_size: int = 0, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads in each ViT block. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + norm_layer (nn.Module): Normalization layer. + act_layer (nn.Module): Activation layer. + use_rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + window_size (int): Window size for window attention blocks. If it equals 0, then + use global attention. + input_size (tuple(int, int) or None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + use_rel_pos=use_rel_pos, + rel_pos_zero_init=rel_pos_zero_init, + input_size=input_size if window_size == 0 else (window_size, window_size), + ) + + self.norm2 = norm_layer(dim) + self.mlp = MLPBlock( + embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer + ) + + self.window_size = window_size + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x + x = self.norm1(x) + # Window partition + if self.window_size > 0: + H, W = x.shape[1], x.shape[2] + x, pad_hw = window_partition(x, self.window_size) + + x = self.attn(x) + # Reverse window partition + if self.window_size > 0: + x = window_unpartition(x, self.window_size, pad_hw, (H, W)) + + x = shortcut + x + x = x + self.mlp(self.norm2(x)) + + return x + + +class Attention(nn.Module): + """Multi-head Attention block with relative position embeddings.""" + + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = True, + use_rel_pos: bool = False, + rel_pos_zero_init: bool = True, + input_size: Optional[Tuple[int, int]] = None, + ) -> None: + """ + Args: + dim (int): Number of input channels. + num_heads (int): Number of attention heads. + qkv_bias (bool): If True, add a learnable bias to query, key, value. + rel_pos (bool): If True, add relative positional embeddings to the attention map. + rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. + input_size (tuple(int, int) or None): Input resolution for calculating the relative + positional parameter size. + """ + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim**-0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.proj = nn.Linear(dim, dim) + + self.use_rel_pos = use_rel_pos + if self.use_rel_pos: + assert ( + input_size is not None + ), "Input size must be provided if using relative positional encoding." + # initialize relative positional embeddings + self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) + self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, _ = x.shape + # qkv with shape (3, B, nHead, H * W, C) + qkv = ( + self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + ) + # q, k, v with shape (B * nHead, H * W, C) + q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) + + attn = (q * self.scale) @ k.transpose(-2, -1) + + if self.use_rel_pos: + attn = add_decomposed_rel_pos( + attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W) + ) + + attn = attn.softmax(dim=-1) + x = ( + (attn @ v) + .view(B, self.num_heads, H, W, -1) + .permute(0, 2, 3, 1, 4) + .reshape(B, H, W, -1) + ) + x = self.proj(x) + + return x + + +def window_partition( + x: torch.Tensor, window_size: int +) -> Tuple[torch.Tensor, Tuple[int, int]]: + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + if pad_h > 0 or pad_w > 0: + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + Hp, Wp = H + pad_h, W + pad_w + + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = ( + x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + ) + return windows, (Hp, Wp) + + +def window_unpartition( + windows: torch.Tensor, + window_size: int, + pad_hw: Tuple[int, int], + hw: Tuple[int, int], +) -> torch.Tensor: + """ + Window unpartition into original sequences and removing padding. + Args: + windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + pad_hw (Tuple): padded height and width (Hp, Wp). + hw (Tuple): original height and width (H, W) before padding. + + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + Hp, Wp = pad_hw + H, W = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view( + B, Hp // window_size, Wp // window_size, window_size, window_size, -1 + ) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + + if Hp > H or Wp > W: + x = x[:, :H, :W, :].contiguous() + return x + + +def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: + """ + Get relative positional embeddings according to the relative positions of + query and key sizes. + Args: + q_size (int): size of query q. + k_size (int): size of key k. + rel_pos (Tensor): relative position embeddings (L, C). + + Returns: + Extracted positional embeddings according to relative positions. + """ + max_rel_dist = int(2 * max(q_size, k_size) - 1) + # Interpolate rel pos if needed. + if rel_pos.shape[0] != max_rel_dist: + # Interpolate rel pos. + rel_pos_resized = F.interpolate( + rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), + size=max_rel_dist, + mode="linear", + ) + rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) + else: + rel_pos_resized = rel_pos + + # Scale the coords with short length if shapes for q and k are different. + q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) + k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) + relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) + + return rel_pos_resized[relative_coords.long()] + + +def add_decomposed_rel_pos( + attn: torch.Tensor, + q: torch.Tensor, + rel_pos_h: torch.Tensor, + rel_pos_w: torch.Tensor, + q_size: Tuple[int, int], + k_size: Tuple[int, int], +) -> torch.Tensor: + """ + Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. + https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 + Args: + attn (Tensor): attention map. + q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). + rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. + rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. + q_size (Tuple): spatial sequence size of query q with (q_h, q_w). + k_size (Tuple): spatial sequence size of key k with (k_h, k_w). + + Returns: + attn (Tensor): attention map with added relative positional embeddings. + """ + q_h, q_w = q_size + k_h, k_w = k_size + Rh = get_rel_pos(q_h, k_h, rel_pos_h) + Rw = get_rel_pos(q_w, k_w, rel_pos_w) + + B, _, dim = q.shape + r_q = q.reshape(B, q_h, q_w, dim) + rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) + rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) + + attn = ( + attn.view(B, q_h, q_w, k_h, k_w) + + rel_h[:, :, :, :, None] + + rel_w[:, :, :, None, :] + ).view(B, q_h * q_w, k_h * k_w) + + return attn + + +class PatchEmbed(nn.Module): + """ + Image to Patch Embedding. + """ + + def __init__( + self, + kernel_size: Tuple[int, int] = (16, 16), + stride: Tuple[int, int] = (16, 16), + padding: Tuple[int, int] = (0, 0), + in_chans: int = 3, + embed_dim: int = 768, + ) -> None: + """ + Args: + kernel_size (Tuple): kernel size of the projection layer. + stride (Tuple): stride of the projection layer. + padding (Tuple): padding size of the projection layer. + in_chans (int): Number of input image channels. + embed_dim (int): Patch embedding dimension. + """ + super().__init__() + + self.proj = nn.Conv2d( + in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + # B C H W -> B H W C + x = x.permute(0, 2, 3, 1) + return x diff --git a/lisa_on_cuda/segment_anything/modeling/mask_decoder.py b/lisa_on_cuda/segment_anything/modeling/mask_decoder.py new file mode 100755 index 0000000000000000000000000000000000000000..fb104ea48ae3dfa94b3622bfd7d2556f8c59f43d --- /dev/null +++ b/lisa_on_cuda/segment_anything/modeling/mask_decoder.py @@ -0,0 +1,191 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import List, Tuple, Type + +import torch +from torch import nn +from torch.nn import functional as F + +from .common import LayerNorm2d + + +class MaskDecoder(nn.Module): + def __init__( + self, + *, + transformer_dim: int, + transformer: nn.Module, + num_multimask_outputs: int = 3, + activation: Type[nn.Module] = nn.GELU, + iou_head_depth: int = 3, + iou_head_hidden_dim: int = 256, + ) -> None: + """ + Predicts masks given an image and prompt embeddings, using a + transformer architecture. + + Arguments: + transformer_dim (int): the channel dimension of the transformer + transformer (nn.Module): the transformer used to predict masks + num_multimask_outputs (int): the number of masks to predict + when disambiguating masks + activation (nn.Module): the type of activation to use when + upscaling masks + iou_head_depth (int): the depth of the MLP used to predict + mask quality + iou_head_hidden_dim (int): the hidden dimension of the MLP + used to predict mask quality + """ + super().__init__() + self.transformer_dim = transformer_dim + self.transformer = transformer + + self.num_multimask_outputs = num_multimask_outputs + + self.iou_token = nn.Embedding(1, transformer_dim) + self.num_mask_tokens = num_multimask_outputs + 1 + self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) + + self.output_upscaling = nn.Sequential( + nn.ConvTranspose2d( + transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 + ), + LayerNorm2d(transformer_dim // 4), + activation(), + nn.ConvTranspose2d( + transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 + ), + activation(), + ) + self.output_hypernetworks_mlps = nn.ModuleList( + [ + MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) + for i in range(self.num_mask_tokens) + ] + ) + + self.iou_prediction_head = MLP( + transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth + ) + + def forward( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + multimask_output: bool, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Predict masks given image and prompt embeddings. + + Arguments: + image_embeddings (torch.Tensor): the embeddings from the image encoder + image_pe (torch.Tensor): positional encoding with the shape of image_embeddings + sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes + dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs + multimask_output (bool): Whether to return multiple masks or a single + mask. + + Returns: + torch.Tensor: batched predicted masks + torch.Tensor: batched predictions of mask quality + """ + masks, iou_pred = self.predict_masks( + image_embeddings=image_embeddings, + image_pe=image_pe, + sparse_prompt_embeddings=sparse_prompt_embeddings, + dense_prompt_embeddings=dense_prompt_embeddings, + ) + + # Select the correct mask or masks for output + if multimask_output: + mask_slice = slice(1, None) + else: + mask_slice = slice(0, 1) + masks = masks[:, mask_slice, :, :] + iou_pred = iou_pred[:, mask_slice] + + # Prepare output + return masks, iou_pred + + def predict_masks( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Predicts masks. See 'forward' for more details.""" + # Concatenate output tokens + output_tokens = torch.cat( + [self.iou_token.weight, self.mask_tokens.weight], dim=0 + ) + output_tokens = output_tokens.unsqueeze(0).expand( + sparse_prompt_embeddings.size(0), -1, -1 + ) + + tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) + + # image_embeddings: [1, C, H, W], tokens: [B, N, C] + # dense_prompt_embeddings: [B, C, H, W] + # Expand per-image data in batch direction to be per-mask + src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) + src = src + dense_prompt_embeddings + pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) + b, c, h, w = src.shape + + # Run the transformer + hs, src = self.transformer(src, pos_src, tokens) + iou_token_out = hs[:, 0, :] + mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] + + # Upscale mask embeddings and predict masks using the mask tokens + src = src.transpose(1, 2).view(b, c, h, w) + upscaled_embedding = self.output_upscaling(src) + hyper_in_list: List[torch.Tensor] = [] + for i in range(self.num_mask_tokens): + hyper_in_list.append( + self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) + ) + hyper_in = torch.stack(hyper_in_list, dim=1) + b, c, h, w = upscaled_embedding.shape + masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view( + b, self.num_mask_tokens, h, w + ) + + # Generate mask quality predictions + iou_pred = self.iou_prediction_head(iou_token_out) + + return masks, iou_pred + + +# Lightly adapted from +# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa +class MLP(nn.Module): + def __init__( + self, + input_dim: int, + hidden_dim: int, + output_dim: int, + num_layers: int, + sigmoid_output: bool = False, + ) -> None: + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList( + nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) + ) + self.sigmoid_output = sigmoid_output + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + if self.sigmoid_output: + x = F.sigmoid(x) + return x diff --git a/lisa_on_cuda/segment_anything/modeling/prompt_encoder.py b/lisa_on_cuda/segment_anything/modeling/prompt_encoder.py new file mode 100755 index 0000000000000000000000000000000000000000..16bc3a45e75f154453ed0724c70ce8daa0324c81 --- /dev/null +++ b/lisa_on_cuda/segment_anything/modeling/prompt_encoder.py @@ -0,0 +1,238 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Any, Optional, Tuple, Type + +import numpy as np +import torch +from torch import nn + +from .common import LayerNorm2d + + +class PromptEncoder(nn.Module): + def __init__( + self, + embed_dim: int, + image_embedding_size: Tuple[int, int], + input_image_size: Tuple[int, int], + mask_in_chans: int, + activation: Type[nn.Module] = nn.GELU, + ) -> None: + """ + Encodes prompts for input to SAM's mask decoder. + + Arguments: + embed_dim (int): The prompts' embedding dimension + image_embedding_size (tuple(int, int)): The spatial size of the + image embedding, as (H, W). + input_image_size (int): The padded size of the image as input + to the image encoder, as (H, W). + mask_in_chans (int): The number of hidden channels used for + encoding input masks. + activation (nn.Module): The activation to use when encoding + input masks. + """ + super().__init__() + self.embed_dim = embed_dim + self.input_image_size = input_image_size + self.image_embedding_size = image_embedding_size + self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) + + self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners + point_embeddings = [ + nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings) + ] + self.point_embeddings = nn.ModuleList(point_embeddings) + self.not_a_point_embed = nn.Embedding(1, embed_dim) + + self.mask_input_size = ( + 4 * image_embedding_size[0], + 4 * image_embedding_size[1], + ) + self.mask_downscaling = nn.Sequential( + nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans // 4), + activation(), + nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans), + activation(), + nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), + ) + self.no_mask_embed = nn.Embedding(1, embed_dim) + + def get_dense_pe(self) -> torch.Tensor: + """ + Returns the positional encoding used to encode point prompts, + applied to a dense set of points the shape of the image encoding. + + Returns: + torch.Tensor: Positional encoding with shape + 1x(embed_dim)x(embedding_h)x(embedding_w) + """ + return self.pe_layer(self.image_embedding_size).unsqueeze(0) + + def _embed_points( + self, + points: torch.Tensor, + labels: torch.Tensor, + pad: bool, + ) -> torch.Tensor: + """Embeds point prompts.""" + points = points + 0.5 # Shift to center of pixel + if pad: + padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) + padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) + points = torch.cat([points, padding_point], dim=1) + labels = torch.cat([labels, padding_label], dim=1) + point_embedding = self.pe_layer.forward_with_coords( + points, self.input_image_size + ) + point_embedding[labels == -1] = 0.0 + point_embedding[labels == -1] += self.not_a_point_embed.weight + point_embedding[labels == 0] += self.point_embeddings[0].weight + point_embedding[labels == 1] += self.point_embeddings[1].weight + return point_embedding + + def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: + """Embeds box prompts.""" + boxes = boxes + 0.5 # Shift to center of pixel + coords = boxes.reshape(-1, 2, 2) + corner_embedding = self.pe_layer.forward_with_coords( + coords, self.input_image_size + ) + corner_embedding[:, 0, :] += self.point_embeddings[2].weight + corner_embedding[:, 1, :] += self.point_embeddings[3].weight + return corner_embedding + + def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: + """Embeds mask inputs.""" + mask_embedding = self.mask_downscaling(masks) + return mask_embedding + + def _get_batch_size( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + text_embeds: Optional[torch.Tensor], + ) -> int: + """ + Gets the batch size of the output given the batch size of the input prompts. + """ + if points is not None: + return points[0].shape[0] + elif boxes is not None: + return boxes.shape[0] + elif masks is not None: + return masks.shape[0] + elif text_embeds is not None: + return text_embeds.shape[0] + else: + return 1 + + def _get_device(self) -> torch.device: + return self.point_embeddings[0].weight.device + + def forward( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + text_embeds: Optional[torch.Tensor], + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Embeds different types of prompts, returning both sparse and dense + embeddings. + + Arguments: + points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates + and labels to embed. + boxes (torch.Tensor or none): boxes to embed + masks (torch.Tensor or none): masks to embed + + Returns: + torch.Tensor: sparse embeddings for the points and boxes, with shape + BxNx(embed_dim), where N is determined by the number of input points + and boxes. + torch.Tensor: dense embeddings for the masks, in the shape + Bx(embed_dim)x(embed_H)x(embed_W) + """ + bs = self._get_batch_size(points, boxes, masks, text_embeds) + sparse_embeddings = torch.empty( + (bs, 0, self.embed_dim), device=self._get_device() + ) + if points is not None: + coords, labels = points + point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) + sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) + if boxes is not None: + box_embeddings = self._embed_boxes(boxes) + sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) + + if text_embeds is not None: + sparse_embeddings = torch.cat([sparse_embeddings, text_embeds], dim=1) + + if masks is not None: + dense_embeddings = self._embed_masks(masks) + else: + dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( + bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] + ) + + return sparse_embeddings, dense_embeddings + + +class PositionEmbeddingRandom(nn.Module): + """ + Positional encoding using random spatial frequencies. + """ + + def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: + super().__init__() + if scale is None or scale <= 0.0: + scale = 1.0 + self.register_buffer( + "positional_encoding_gaussian_matrix", + scale * torch.randn((2, num_pos_feats)), + ) + + def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: + """Positionally encode points that are normalized to [0,1].""" + # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape + coords = 2 * coords - 1 + + if coords.dtype != self.positional_encoding_gaussian_matrix.dtype: + coords = coords.to(self.positional_encoding_gaussian_matrix.dtype) + + coords = coords @ self.positional_encoding_gaussian_matrix + coords = 2 * np.pi * coords + # outputs d_1 x ... x d_n x C shape + return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) + + def forward(self, size: Tuple[int, int]) -> torch.Tensor: + """Generate positional encoding for a grid of the specified size.""" + h, w = size + device: Any = self.positional_encoding_gaussian_matrix.device + grid = torch.ones( + (h, w), device=device, dtype=self.positional_encoding_gaussian_matrix.dtype + ) + y_embed = grid.cumsum(dim=0) - 0.5 + x_embed = grid.cumsum(dim=1) - 0.5 + y_embed = y_embed / h + x_embed = x_embed / w + + pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) + return pe.permute(2, 0, 1) # C x H x W + + def forward_with_coords( + self, coords_input: torch.Tensor, image_size: Tuple[int, int] + ) -> torch.Tensor: + """Positionally encode points that are not normalized to [0,1].""" + coords = coords_input.clone() + coords[:, :, 0] = coords[:, :, 0] / image_size[1] + coords[:, :, 1] = coords[:, :, 1] / image_size[0] + return self._pe_encoding(coords.to(torch.float)) # B x N x C diff --git a/lisa_on_cuda/segment_anything/modeling/sam.py b/lisa_on_cuda/segment_anything/modeling/sam.py new file mode 100755 index 0000000000000000000000000000000000000000..f1d82cac3cc1deea45171fd9360dfd7fa25e457a --- /dev/null +++ b/lisa_on_cuda/segment_anything/modeling/sam.py @@ -0,0 +1,184 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Any, Dict, List, Tuple + +import torch +from torch import nn +from torch.nn import functional as F + +from .image_encoder import ImageEncoderViT +from .mask_decoder import MaskDecoder +from .prompt_encoder import PromptEncoder + + +class Sam(nn.Module): + mask_threshold: float = 0.0 + image_format: str = "RGB" + + def __init__( + self, + image_encoder: ImageEncoderViT, + prompt_encoder: PromptEncoder, + mask_decoder: MaskDecoder, + pixel_mean: List[float] = [123.675, 116.28, 103.53], + pixel_std: List[float] = [58.395, 57.12, 57.375], + ) -> None: + """ + SAM predicts object masks from an image and input prompts. + + Arguments: + image_encoder (ImageEncoderViT): The backbone used to encode the + image into image embeddings that allow for efficient mask prediction. + prompt_encoder (PromptEncoder): Encodes various types of input prompts. + mask_decoder (MaskDecoder): Predicts masks from the image embeddings + and encoded prompts. + pixel_mean (list(float)): Mean values for normalizing pixels in the input image. + pixel_std (list(float)): Std values for normalizing pixels in the input image. + """ + super().__init__() + self.image_encoder = image_encoder + self.prompt_encoder = prompt_encoder + self.mask_decoder = mask_decoder + self.register_buffer( + "pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False + ) + self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) + + @property + def device(self) -> Any: + return self.pixel_mean.device + + @torch.no_grad() + def forward( + self, + batched_input: List[Dict[str, Any]], + multimask_output: bool, + ) -> List[Dict[str, torch.Tensor]]: + """ + Predicts masks end-to-end from provided images and prompts. + If prompts are not known in advance, using SamPredictor is + recommended over calling the model directly. + + Arguments: + batched_input (list(dict)): A list over input images, each a + dictionary with the following keys. A prompt key can be + excluded if it is not present. + 'image': The image as a torch tensor in 3xHxW format, + already transformed for input to the model. + 'original_size': (tuple(int, int)) The original size of + the image before transformation, as (H, W). + 'point_coords': (torch.Tensor) Batched point prompts for + this image, with shape BxNx2. Already transformed to the + input frame of the model. + 'point_labels': (torch.Tensor) Batched labels for point prompts, + with shape BxN. + 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. + Already transformed to the input frame of the model. + 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, + in the form Bx1xHxW. + multimask_output (bool): Whether the model should predict multiple + disambiguating masks, or return a single mask. + + Returns: + (list(dict)): A list over input images, where each element is + as dictionary with the following keys. + 'masks': (torch.Tensor) Batched binary mask predictions, + with shape BxCxHxW, where B is the number of input prompts, + C is determined by multimask_output, and (H, W) is the + original size of the image. + 'iou_predictions': (torch.Tensor) The model's predictions + of mask quality, in shape BxC. + 'low_res_logits': (torch.Tensor) Low resolution logits with + shape BxCxHxW, where H=W=256. Can be passed as mask input + to subsequent iterations of prediction. + """ + input_images = torch.stack( + [self.preprocess(x["image"]) for x in batched_input], dim=0 + ) + image_embeddings = self.image_encoder(input_images) + + outputs = [] + for image_record, curr_embedding in zip(batched_input, image_embeddings): + if "point_coords" in image_record: + points = (image_record["point_coords"], image_record["point_labels"]) + else: + points = None + sparse_embeddings, dense_embeddings = self.prompt_encoder( + points=points, + boxes=image_record.get("boxes", None), + masks=image_record.get("mask_inputs", None), + ) + low_res_masks, iou_predictions = self.mask_decoder( + image_embeddings=curr_embedding.unsqueeze(0), + image_pe=self.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + ) + masks = self.postprocess_masks( + low_res_masks, + input_size=image_record["image"].shape[-2:], + original_size=image_record["original_size"], + ) + masks = masks > self.mask_threshold + outputs.append( + { + "masks": masks, + "iou_predictions": iou_predictions, + "low_res_logits": low_res_masks, + } + ) + return outputs + + def postprocess_masks( + self, + masks: torch.Tensor, + input_size: Tuple[int, ...], + original_size: Tuple[int, ...], + ) -> torch.Tensor: + """ + Remove padding and upscale masks to the original image size. + + Arguments: + masks (torch.Tensor): Batched masks from the mask_decoder, + in BxCxHxW format. + input_size (tuple(int, int)): The size of the image input to the + model, in (H, W) format. Used to remove padding. + original_size (tuple(int, int)): The original size of the image + before resizing for input to the model, in (H, W) format. + + Returns: + (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) + is given by original_size. + """ + + dtype = masks.dtype + + masks = F.interpolate( + masks.float(), + (self.image_encoder.img_size, self.image_encoder.img_size), + mode="bilinear", + align_corners=False, + ) + # masks = masks.to(dtype) + masks = masks[..., : input_size[0], : input_size[1]] + masks = F.interpolate( + masks, original_size, mode="bilinear", align_corners=False + ) + return masks + + def preprocess(self, x: torch.Tensor) -> torch.Tensor: + """Normalize pixel values and pad to a square input.""" + # Normalize colors + x = (x - self.pixel_mean) / self.pixel_std + + # Pad + h, w = x.shape[-2:] + padh = self.image_encoder.img_size - h + padw = self.image_encoder.img_size - w + x = F.pad(x, (0, padw, 0, padh)) + return x diff --git a/lisa_on_cuda/segment_anything/modeling/transformer.py b/lisa_on_cuda/segment_anything/modeling/transformer.py new file mode 100755 index 0000000000000000000000000000000000000000..8c511e4ff35cc91132b09edd788c96f9a5768161 --- /dev/null +++ b/lisa_on_cuda/segment_anything/modeling/transformer.py @@ -0,0 +1,242 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +from typing import Tuple, Type + +import torch +from torch import Tensor, nn + +from .common import MLPBlock + + +class TwoWayTransformer(nn.Module): + def __init__( + self, + depth: int, + embedding_dim: int, + num_heads: int, + mlp_dim: int, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + ) -> None: + """ + A transformer decoder that attends to an input image using + queries whose positional embedding is supplied. + + Args: + depth (int): number of layers in the transformer + embedding_dim (int): the channel dimension for the input embeddings + num_heads (int): the number of heads for multihead attention. Must + divide embedding_dim + mlp_dim (int): the channel dimension internal to the MLP block + activation (nn.Module): the activation to use in the MLP block + """ + super().__init__() + self.depth = depth + self.embedding_dim = embedding_dim + self.num_heads = num_heads + self.mlp_dim = mlp_dim + self.layers = nn.ModuleList() + + for i in range(depth): + self.layers.append( + TwoWayAttentionBlock( + embedding_dim=embedding_dim, + num_heads=num_heads, + mlp_dim=mlp_dim, + activation=activation, + attention_downsample_rate=attention_downsample_rate, + skip_first_layer_pe=(i == 0), + ) + ) + + self.final_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm_final_attn = nn.LayerNorm(embedding_dim) + + def forward( + self, + image_embedding: Tensor, + image_pe: Tensor, + point_embedding: Tensor, + ) -> Tuple[Tensor, Tensor]: + """ + Args: + image_embedding (torch.Tensor): image to attend to. Should be shape + B x embedding_dim x h x w for any h and w. + image_pe (torch.Tensor): the positional encoding to add to the image. Must + have the same shape as image_embedding. + point_embedding (torch.Tensor): the embedding to add to the query points. + Must have shape B x N_points x embedding_dim for any N_points. + + Returns: + torch.Tensor: the processed point_embedding + torch.Tensor: the processed image_embedding + """ + # BxCxHxW -> BxHWxC == B x N_image_tokens x C + bs, c, h, w = image_embedding.shape + image_embedding = image_embedding.flatten(2).permute(0, 2, 1) + image_pe = image_pe.flatten(2).permute(0, 2, 1) + + # Prepare queries + queries = point_embedding + keys = image_embedding + + # Apply transformer blocks and final layernorm + for layer in self.layers: + queries, keys = layer( + queries=queries, + keys=keys, + query_pe=point_embedding, + key_pe=image_pe, + ) + + # Apply the final attention layer from the points to the image + q = queries + point_embedding + k = keys + image_pe + attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm_final_attn(queries) + + return queries, keys + + +class TwoWayAttentionBlock(nn.Module): + def __init__( + self, + embedding_dim: int, + num_heads: int, + mlp_dim: int = 2048, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + skip_first_layer_pe: bool = False, + ) -> None: + """ + A transformer block with four layers: (1) self-attention of sparse + inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp + block on sparse inputs, and (4) cross attention of dense inputs to sparse + inputs. + + Arguments: + embedding_dim (int): the channel dimension of the embeddings + num_heads (int): the number of heads in the attention layers + mlp_dim (int): the hidden dimension of the mlp block + activation (nn.Module): the activation of the mlp block + skip_first_layer_pe (bool): skip the PE on the first layer + """ + super().__init__() + self.self_attn = Attention(embedding_dim, num_heads) + self.norm1 = nn.LayerNorm(embedding_dim) + + self.cross_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm2 = nn.LayerNorm(embedding_dim) + + self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) + self.norm3 = nn.LayerNorm(embedding_dim) + + self.norm4 = nn.LayerNorm(embedding_dim) + self.cross_attn_image_to_token = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + + self.skip_first_layer_pe = skip_first_layer_pe + + def forward( + self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor + ) -> Tuple[Tensor, Tensor]: + # Self attention block + if self.skip_first_layer_pe: + queries = self.self_attn(q=queries, k=queries, v=queries) + else: + q = queries + query_pe + attn_out = self.self_attn(q=q, k=q, v=queries) + queries = queries + attn_out + queries = self.norm1(queries) + + # Cross attention block, tokens attending to image embedding + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm2(queries) + + # MLP block + mlp_out = self.mlp(queries) + queries = queries + mlp_out + queries = self.norm3(queries) + + # Cross attention block, image embedding attending to tokens + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) + keys = keys + attn_out + keys = self.norm4(keys) + + return queries, keys + + +class Attention(nn.Module): + """ + An attention layer that allows for downscaling the size of the embedding + after projection to queries, keys, and values. + """ + + def __init__( + self, + embedding_dim: int, + num_heads: int, + downsample_rate: int = 1, + ) -> None: + super().__init__() + self.embedding_dim = embedding_dim + self.internal_dim = embedding_dim // downsample_rate + self.num_heads = num_heads + assert ( + self.internal_dim % num_heads == 0 + ), "num_heads must divide embedding_dim." + + self.q_proj = nn.Linear(embedding_dim, self.internal_dim) + self.k_proj = nn.Linear(embedding_dim, self.internal_dim) + self.v_proj = nn.Linear(embedding_dim, self.internal_dim) + self.out_proj = nn.Linear(self.internal_dim, embedding_dim) + + def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: + b, n, c = x.shape + x = x.reshape(b, n, num_heads, c // num_heads) + return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head + + def _recombine_heads(self, x: Tensor) -> Tensor: + b, n_heads, n_tokens, c_per_head = x.shape + x = x.transpose(1, 2) + return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C + + def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: + # Input projections + q = self.q_proj(q) + k = self.k_proj(k) + v = self.v_proj(v) + + # Separate into heads + q = self._separate_heads(q, self.num_heads) + k = self._separate_heads(k, self.num_heads) + v = self._separate_heads(v, self.num_heads) + + # Attention + _, _, _, c_per_head = q.shape + attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens + attn = attn / math.sqrt(c_per_head) + attn = torch.softmax(attn, dim=-1) + + # Get output + out = attn @ v + out = self._recombine_heads(out) + out = self.out_proj(out) + + return out diff --git a/lisa_on_cuda/segment_anything/predictor.py b/lisa_on_cuda/segment_anything/predictor.py new file mode 100755 index 0000000000000000000000000000000000000000..bf52d81c2ef2e81b87e574fc935e88749ae3ebf6 --- /dev/null +++ b/lisa_on_cuda/segment_anything/predictor.py @@ -0,0 +1,284 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Optional, Tuple + +import numpy as np +import torch + +from .modeling import Sam +from .utils.transforms import ResizeLongestSide + + +class SamPredictor: + def __init__( + self, + sam_model: Sam, + ) -> None: + """ + Uses SAM to calculate the image embedding for an image, and then + allow repeated, efficient mask prediction given prompts. + + Arguments: + sam_model (Sam): The model to use for mask prediction. + """ + super().__init__() + self.model = sam_model + self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) + self.reset_image() + + def set_image( + self, + image: np.ndarray, + image_format: str = "RGB", + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. + + Arguments: + image (np.ndarray): The image for calculating masks. Expects an + image in HWC uint8 format, with pixel values in [0, 255]. + image_format (str): The color format of the image, in ['RGB', 'BGR']. + """ + assert image_format in [ + "RGB", + "BGR", + ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." + if image_format != self.model.image_format: + image = image[..., ::-1] + + # Transform the image to the form expected by the model + input_image = self.transform.apply_image(image) + input_image_torch = torch.as_tensor(input_image, device=self.device) + input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[ + None, :, :, : + ] + + self.set_torch_image(input_image_torch, image.shape[:2]) + + @torch.no_grad() + def set_torch_image( + self, + transformed_image: torch.Tensor, + original_image_size: Tuple[int, ...], + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. Expects the input + image to be already transformed to the format expected by the model. + + Arguments: + transformed_image (torch.Tensor): The input image, with shape + 1x3xHxW, which has been transformed with ResizeLongestSide. + original_image_size (tuple(int, int)): The size of the image + before transformation, in (H, W) format. + """ + assert ( + len(transformed_image.shape) == 4 + and transformed_image.shape[1] == 3 + and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size + ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." + self.reset_image() + + self.original_size = original_image_size + self.input_size = tuple(transformed_image.shape[-2:]) + input_image = self.model.preprocess(transformed_image) + self.features = self.model.image_encoder(input_image) + self.is_image_set = True + + def predict( + self, + point_coords: Optional[np.ndarray] = None, + point_labels: Optional[np.ndarray] = None, + box: Optional[np.ndarray] = None, + mask_input: Optional[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """ + Predict masks for the given input prompts, using the currently set image. + + Arguments: + point_coords (np.ndarray or None): A Nx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (np.ndarray or None): A length N array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray or None): A length 4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form 1xHxW, where + for SAM, H=W=256. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (np.ndarray): The output masks in CxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (np.ndarray): An array of length C containing the model's + predictions for the quality of each mask. + (np.ndarray): An array of shape CxHxW, where C is the number + of masks and H=W=256. These low resolution logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) before mask prediction." + ) + + # Transform input prompts + coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None + if point_coords is not None: + assert ( + point_labels is not None + ), "point_labels must be supplied if point_coords is supplied." + point_coords = self.transform.apply_coords(point_coords, self.original_size) + coords_torch = torch.as_tensor( + point_coords, dtype=torch.float, device=self.device + ) + labels_torch = torch.as_tensor( + point_labels, dtype=torch.int, device=self.device + ) + coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] + if box is not None: + box = self.transform.apply_boxes(box, self.original_size) + box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) + box_torch = box_torch[None, :] + if mask_input is not None: + mask_input_torch = torch.as_tensor( + mask_input, dtype=torch.float, device=self.device + ) + mask_input_torch = mask_input_torch[None, :, :, :] + + masks, iou_predictions, low_res_masks = self.predict_torch( + coords_torch, + labels_torch, + box_torch, + mask_input_torch, + multimask_output, + return_logits=return_logits, + ) + + masks_np = masks[0].detach().cpu().numpy() + iou_predictions_np = iou_predictions[0].detach().cpu().numpy() + low_res_masks_np = low_res_masks[0].detach().cpu().numpy() + return masks_np, iou_predictions_np, low_res_masks_np + + @torch.no_grad() + def predict_torch( + self, + point_coords: Optional[torch.Tensor], + point_labels: Optional[torch.Tensor], + boxes: Optional[torch.Tensor] = None, + mask_input: Optional[torch.Tensor] = None, + multimask_output: bool = True, + return_logits: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + Input prompts are batched torch tensors and are expected to already be + transformed to the input frame using ResizeLongestSide. + + Arguments: + point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (torch.Tensor or None): A BxN array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + boxes (np.ndarray or None): A Bx4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form Bx1xHxW, where + for SAM, H=W=256. Masks returned by a previous iteration of the + predict method do not need further transformation. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (torch.Tensor): The output masks in BxCxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (torch.Tensor): An array of shape BxC containing the model's + predictions for the quality of each mask. + (torch.Tensor): An array of shape BxCxHxW, where C is the number + of masks and H=W=256. These low res logits can be passed to + a subsequent iteration as mask input. + """ + if not self.is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) before mask prediction." + ) + + if point_coords is not None: + points = (point_coords, point_labels) + else: + points = None + + # Embed prompts + sparse_embeddings, dense_embeddings = self.model.prompt_encoder( + points=points, + boxes=boxes, + masks=mask_input, + ) + + # Predict masks + low_res_masks, iou_predictions = self.model.mask_decoder( + image_embeddings=self.features, + image_pe=self.model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + ) + + # Upscale the masks to the original image resolution + masks = self.model.postprocess_masks( + low_res_masks, self.input_size, self.original_size + ) + + if not return_logits: + masks = masks > self.model.mask_threshold + + return masks, iou_predictions, low_res_masks + + def get_image_embedding(self) -> torch.Tensor: + """ + Returns the image embeddings for the currently set image, with + shape 1xCxHxW, where C is the embedding dimension and (H,W) are + the embedding spatial dimension of SAM (typically C=256, H=W=64). + """ + if not self.is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) to generate an embedding." + ) + assert ( + self.features is not None + ), "Features must exist if an image has been set." + return self.features + + @property + def device(self) -> torch.device: + return self.model.device + + def reset_image(self) -> None: + """Resets the currently set image.""" + self.is_image_set = False + self.features = None + self.orig_h = None + self.orig_w = None + self.input_h = None + self.input_w = None diff --git a/lisa_on_cuda/segment_anything/utils/__init__.py b/lisa_on_cuda/segment_anything/utils/__init__.py new file mode 100755 index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae --- /dev/null +++ b/lisa_on_cuda/segment_anything/utils/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/lisa_on_cuda/segment_anything/utils/amg.py b/lisa_on_cuda/segment_anything/utils/amg.py new file mode 100755 index 0000000000000000000000000000000000000000..5c3bc5d789049076a2404b1b2477110cebc32fb2 --- /dev/null +++ b/lisa_on_cuda/segment_anything/utils/amg.py @@ -0,0 +1,346 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +from copy import deepcopy +from itertools import product +from typing import Any, Dict, Generator, ItemsView, List, Tuple + +import numpy as np +import torch + + +class MaskData: + """ + A structure for storing masks and their related data in batched format. + Implements basic filtering and concatenation. + """ + + def __init__(self, **kwargs) -> None: + for v in kwargs.values(): + assert isinstance( + v, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats = dict(**kwargs) + + def __setitem__(self, key: str, item: Any) -> None: + assert isinstance( + item, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats[key] = item + + def __delitem__(self, key: str) -> None: + del self._stats[key] + + def __getitem__(self, key: str) -> Any: + return self._stats[key] + + def items(self) -> ItemsView[str, Any]: + return self._stats.items() + + def filter(self, keep: torch.Tensor) -> None: + for k, v in self._stats.items(): + if v is None: + self._stats[k] = None + elif isinstance(v, torch.Tensor): + self._stats[k] = v[torch.as_tensor(keep, device=v.device)] + elif isinstance(v, np.ndarray): + self._stats[k] = v[keep.detach().cpu().numpy()] + elif isinstance(v, list) and keep.dtype == torch.bool: + self._stats[k] = [a for i, a in enumerate(v) if keep[i]] + elif isinstance(v, list): + self._stats[k] = [v[i] for i in keep] + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def cat(self, new_stats: "MaskData") -> None: + for k, v in new_stats.items(): + if k not in self._stats or self._stats[k] is None: + self._stats[k] = deepcopy(v) + elif isinstance(v, torch.Tensor): + self._stats[k] = torch.cat([self._stats[k], v], dim=0) + elif isinstance(v, np.ndarray): + self._stats[k] = np.concatenate([self._stats[k], v], axis=0) + elif isinstance(v, list): + self._stats[k] = self._stats[k] + deepcopy(v) + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def to_numpy(self) -> None: + for k, v in self._stats.items(): + if isinstance(v, torch.Tensor): + self._stats[k] = v.detach().cpu().numpy() + + +def is_box_near_crop_edge( + boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0 +) -> torch.Tensor: + """Filter masks at the edge of a crop, but not at the edge of the original image.""" + crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) + orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) + boxes = uncrop_boxes_xyxy(boxes, crop_box).float() + near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) + near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) + near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) + return torch.any(near_crop_edge, dim=1) + + +def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor: + box_xywh = deepcopy(box_xyxy) + box_xywh[2] = box_xywh[2] - box_xywh[0] + box_xywh[3] = box_xywh[3] - box_xywh[1] + return box_xywh + + +def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: + assert len(args) > 0 and all( + len(a) == len(args[0]) for a in args + ), "Batched iteration must have inputs of all the same size." + n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) + for b in range(n_batches): + yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] + + +def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: + """ + Encodes masks to an uncompressed RLE, in the format expected by + pycoco tools. + """ + # Put in fortran order and flatten h,w + b, h, w = tensor.shape + tensor = tensor.permute(0, 2, 1).flatten(1) + + # Compute change indices + diff = tensor[:, 1:] ^ tensor[:, :-1] + change_indices = diff.nonzero() + + # Encode run length + out = [] + for i in range(b): + cur_idxs = change_indices[change_indices[:, 0] == i, 1] + cur_idxs = torch.cat( + [ + torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), + cur_idxs + 1, + torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), + ] + ) + btw_idxs = cur_idxs[1:] - cur_idxs[:-1] + counts = [] if tensor[i, 0] == 0 else [0] + counts.extend(btw_idxs.detach().cpu().tolist()) + out.append({"size": [h, w], "counts": counts}) + return out + + +def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: + """Compute a binary mask from an uncompressed RLE.""" + h, w = rle["size"] + mask = np.empty(h * w, dtype=bool) + idx = 0 + parity = False + for count in rle["counts"]: + mask[idx : idx + count] = parity + idx += count + parity ^= True + mask = mask.reshape(w, h) + return mask.transpose() # Put in C order + + +def area_from_rle(rle: Dict[str, Any]) -> int: + return sum(rle["counts"][1::2]) + + +def calculate_stability_score( + masks: torch.Tensor, mask_threshold: float, threshold_offset: float +) -> torch.Tensor: + """ + Computes the stability score for a batch of masks. The stability + score is the IoU between the binary masks obtained by thresholding + the predicted mask logits at high and low values. + """ + # One mask is always contained inside the other. + # Save memory by preventing unnecessary cast to torch.int64 + intersections = ( + (masks > (mask_threshold + threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + unions = ( + (masks > (mask_threshold - threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + return intersections / unions + + +def build_point_grid(n_per_side: int) -> np.ndarray: + """Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" + offset = 1 / (2 * n_per_side) + points_one_side = np.linspace(offset, 1 - offset, n_per_side) + points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) + points_y = np.tile(points_one_side[:, None], (1, n_per_side)) + points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) + return points + + +def build_all_layer_point_grids( + n_per_side: int, n_layers: int, scale_per_layer: int +) -> List[np.ndarray]: + """Generates point grids for all crop layers.""" + points_by_layer = [] + for i in range(n_layers + 1): + n_points = int(n_per_side / (scale_per_layer**i)) + points_by_layer.append(build_point_grid(n_points)) + return points_by_layer + + +def generate_crop_boxes( + im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float +) -> Tuple[List[List[int]], List[int]]: + """ + Generates a list of crop boxes of different sizes. Each layer + has (2**i)**2 boxes for the ith layer. + """ + crop_boxes, layer_idxs = [], [] + im_h, im_w = im_size + short_side = min(im_h, im_w) + + # Original image + crop_boxes.append([0, 0, im_w, im_h]) + layer_idxs.append(0) + + def crop_len(orig_len, n_crops, overlap): + return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops)) + + for i_layer in range(n_layers): + n_crops_per_side = 2 ** (i_layer + 1) + overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) + + crop_w = crop_len(im_w, n_crops_per_side, overlap) + crop_h = crop_len(im_h, n_crops_per_side, overlap) + + crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)] + crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)] + + # Crops in XYWH format + for x0, y0 in product(crop_box_x0, crop_box_y0): + box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)] + crop_boxes.append(box) + layer_idxs.append(i_layer + 1) + + return crop_boxes, layer_idxs + + +def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device) + # Check if boxes has a channel dimension + if len(boxes.shape) == 3: + offset = offset.unsqueeze(1) + return boxes + offset + + +def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0]], device=points.device) + # Check if points has a channel dimension + if len(points.shape) == 3: + offset = offset.unsqueeze(1) + return points + offset + + +def uncrop_masks( + masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int +) -> torch.Tensor: + x0, y0, x1, y1 = crop_box + if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h: + return masks + # Coordinate transform masks + pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0) + pad = (x0, pad_x - x0, y0, pad_y - y0) + return torch.nn.functional.pad(masks, pad, value=0) + + +def remove_small_regions( + mask: np.ndarray, area_thresh: float, mode: str +) -> Tuple[np.ndarray, bool]: + """ + Removes small disconnected regions and holes in a mask. Returns the + mask and an indicator of if the mask has been modified. + """ + import cv2 # type: ignore + + assert mode in ["holes", "islands"] + correct_holes = mode == "holes" + working_mask = (correct_holes ^ mask).astype(np.uint8) + n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) + sizes = stats[:, -1][1:] # Row 0 is background label + small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] + if len(small_regions) == 0: + return mask, False + fill_labels = [0] + small_regions + if not correct_holes: + fill_labels = [i for i in range(n_labels) if i not in fill_labels] + # If every region is below threshold, keep largest + if len(fill_labels) == 0: + fill_labels = [int(np.argmax(sizes)) + 1] + mask = np.isin(regions, fill_labels) + return mask, True + + +def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: + from pycocotools import mask as mask_utils # type: ignore + + h, w = uncompressed_rle["size"] + rle = mask_utils.frPyObjects(uncompressed_rle, h, w) + rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json + return rle + + +def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor: + """ + Calculates boxes in XYXY format around masks. Return [0,0,0,0] for + an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4. + """ + # torch.max below raises an error on empty inputs, just skip in this case + if torch.numel(masks) == 0: + return torch.zeros(*masks.shape[:-2], 4, device=masks.device) + + # Normalize shape to CxHxW + shape = masks.shape + h, w = shape[-2:] + if len(shape) > 2: + masks = masks.flatten(0, -3) + else: + masks = masks.unsqueeze(0) + + # Get top and bottom edges + in_height, _ = torch.max(masks, dim=-1) + in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :] + bottom_edges, _ = torch.max(in_height_coords, dim=-1) + in_height_coords = in_height_coords + h * (~in_height) + top_edges, _ = torch.min(in_height_coords, dim=-1) + + # Get left and right edges + in_width, _ = torch.max(masks, dim=-2) + in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :] + right_edges, _ = torch.max(in_width_coords, dim=-1) + in_width_coords = in_width_coords + w * (~in_width) + left_edges, _ = torch.min(in_width_coords, dim=-1) + + # If the mask is empty the right edge will be to the left of the left edge. + # Replace these boxes with [0, 0, 0, 0] + empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) + out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) + out = out * (~empty_filter).unsqueeze(-1) + + # Return to original shape + if len(shape) > 2: + out = out.reshape(*shape[:-2], 4) + else: + out = out[0] + + return out diff --git a/lisa_on_cuda/segment_anything/utils/onnx.py b/lisa_on_cuda/segment_anything/utils/onnx.py new file mode 100755 index 0000000000000000000000000000000000000000..3521208f620aeef707707037d027c0156d940cdf --- /dev/null +++ b/lisa_on_cuda/segment_anything/utils/onnx.py @@ -0,0 +1,157 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Tuple + +import torch +import torch.nn as nn +from torch.nn import functional as F + +from ..modeling import Sam +from .amg import calculate_stability_score + + +class SamOnnxModel(nn.Module): + """ + This model should not be called directly, but is used in ONNX export. + It combines the prompt encoder, mask decoder, and mask postprocessing of Sam, + with some functions modified to enable model tracing. Also supports extra + options controlling what information. See the ONNX export script for details. + """ + + def __init__( + self, + model: Sam, + return_single_mask: bool, + use_stability_score: bool = False, + return_extra_metrics: bool = False, + ) -> None: + super().__init__() + self.mask_decoder = model.mask_decoder + self.model = model + self.img_size = model.image_encoder.img_size + self.return_single_mask = return_single_mask + self.use_stability_score = use_stability_score + self.stability_score_offset = 1.0 + self.return_extra_metrics = return_extra_metrics + + @staticmethod + def resize_longest_image_size( + input_image_size: torch.Tensor, longest_side: int + ) -> torch.Tensor: + input_image_size = input_image_size.to(torch.float32) + scale = longest_side / torch.max(input_image_size) + transformed_size = scale * input_image_size + transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64) + return transformed_size + + def _embed_points( + self, point_coords: torch.Tensor, point_labels: torch.Tensor + ) -> torch.Tensor: + point_coords = point_coords + 0.5 + point_coords = point_coords / self.img_size + point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords) + point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding) + + point_embedding = point_embedding * (point_labels != -1) + point_embedding = ( + point_embedding + + self.model.prompt_encoder.not_a_point_embed.weight * (point_labels == -1) + ) + + for i in range(self.model.prompt_encoder.num_point_embeddings): + point_embedding = ( + point_embedding + + self.model.prompt_encoder.point_embeddings[i].weight + * (point_labels == i) + ) + + return point_embedding + + def _embed_masks( + self, input_mask: torch.Tensor, has_mask_input: torch.Tensor + ) -> torch.Tensor: + mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling( + input_mask + ) + mask_embedding = mask_embedding + ( + 1 - has_mask_input + ) * self.model.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1) + return mask_embedding + + def mask_postprocessing( + self, masks: torch.Tensor, orig_im_size: torch.Tensor + ) -> torch.Tensor: + masks = F.interpolate( + masks, + size=(self.img_size, self.img_size), + mode="bilinear", + align_corners=False, + ) + + prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size).to( + torch.int64 + ) + masks = masks[..., : prepadded_size[0], : prepadded_size[1]] # type: ignore + + orig_im_size = orig_im_size.to(torch.int64) + h, w = orig_im_size[0], orig_im_size[1] + masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False) + return masks + + def select_masks( + self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int + ) -> Tuple[torch.Tensor, torch.Tensor]: + # Determine if we should return the multiclick mask or not from the number of points. + # The reweighting is used to avoid control flow. + score_reweight = torch.tensor( + [[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)] + ).to(iou_preds.device) + score = iou_preds + (num_points - 2.5) * score_reweight + best_idx = torch.argmax(score, dim=1) + masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1) + iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1) + + return masks, iou_preds + + @torch.no_grad() + def forward( + self, + image_embeddings: torch.Tensor, + point_coords: torch.Tensor, + point_labels: torch.Tensor, + mask_input: torch.Tensor, + has_mask_input: torch.Tensor, + orig_im_size: torch.Tensor, + ): + sparse_embedding = self._embed_points(point_coords, point_labels) + dense_embedding = self._embed_masks(mask_input, has_mask_input) + + masks, scores = self.model.mask_decoder.predict_masks( + image_embeddings=image_embeddings, + image_pe=self.model.prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embedding, + dense_prompt_embeddings=dense_embedding, + ) + + if self.use_stability_score: + scores = calculate_stability_score( + masks, self.model.mask_threshold, self.stability_score_offset + ) + + if self.return_single_mask: + masks, scores = self.select_masks(masks, scores, point_coords.shape[1]) + + upscaled_masks = self.mask_postprocessing(masks, orig_im_size) + + if self.return_extra_metrics: + stability_scores = calculate_stability_score( + upscaled_masks, self.model.mask_threshold, self.stability_score_offset + ) + areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1) + return upscaled_masks, scores, stability_scores, areas, masks + + return upscaled_masks, scores, masks diff --git a/lisa_on_cuda/segment_anything/utils/transforms.py b/lisa_on_cuda/segment_anything/utils/transforms.py new file mode 100755 index 0000000000000000000000000000000000000000..4232d84252ea4983b194b2ebe8796741d252ef87 --- /dev/null +++ b/lisa_on_cuda/segment_anything/utils/transforms.py @@ -0,0 +1,113 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from copy import deepcopy +from typing import Tuple + +import numpy as np +import torch +from torch.nn import functional as F +from torchvision.transforms.functional import resize # type: ignore +from torchvision.transforms.functional import to_pil_image + + +class ResizeLongestSide: + """ + Resizes images to the longest side 'target_length', as well as provides + methods for resizing coordinates and boxes. Provides methods for + transforming both numpy array and batched torch tensors. + """ + + def __init__(self, target_length: int) -> None: + self.target_length = target_length + + def apply_image(self, image: np.ndarray) -> np.ndarray: + """ + Expects a numpy array with shape HxWxC in uint8 format. + """ + target_size = self.get_preprocess_shape( + image.shape[0], image.shape[1], self.target_length + ) + return np.array(resize(to_pil_image(image), target_size)) + + def apply_coords( + self, coords: np.ndarray, original_size: Tuple[int, ...] + ) -> np.ndarray: + """ + Expects a numpy array of length 2 in the final dimension. Requires the + original image size in (H, W) format. + """ + old_h, old_w = original_size + new_h, new_w = self.get_preprocess_shape( + original_size[0], original_size[1], self.target_length + ) + coords = deepcopy(coords).astype(float) + coords[..., 0] = coords[..., 0] * (new_w / old_w) + coords[..., 1] = coords[..., 1] * (new_h / old_h) + return coords + + def apply_boxes( + self, boxes: np.ndarray, original_size: Tuple[int, ...] + ) -> np.ndarray: + """ + Expects a numpy array shape Bx4. Requires the original image size + in (H, W) format. + """ + boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size) + return boxes.reshape(-1, 4) + + def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor: + """ + Expects batched images with shape BxCxHxW and float format. This + transformation may not exactly match apply_image. apply_image is + the transformation expected by the model. + """ + # Expects an image in BCHW format. May not exactly match apply_image. + target_size = self.get_preprocess_shape( + image.shape[0], image.shape[1], self.target_length + ) + return F.interpolate( + image, target_size, mode="bilinear", align_corners=False, antialias=True + ) + + def apply_coords_torch( + self, coords: torch.Tensor, original_size: Tuple[int, ...] + ) -> torch.Tensor: + """ + Expects a torch tensor with length 2 in the last dimension. Requires the + original image size in (H, W) format. + """ + old_h, old_w = original_size + new_h, new_w = self.get_preprocess_shape( + original_size[0], original_size[1], self.target_length + ) + coords = deepcopy(coords).to(torch.float) + coords[..., 0] = coords[..., 0] * (new_w / old_w) + coords[..., 1] = coords[..., 1] * (new_h / old_h) + return coords + + def apply_boxes_torch( + self, boxes: torch.Tensor, original_size: Tuple[int, ...] + ) -> torch.Tensor: + """ + Expects a torch tensor with shape Bx4. Requires the original image + size in (H, W) format. + """ + boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size) + return boxes.reshape(-1, 4) + + @staticmethod + def get_preprocess_shape( + oldh: int, oldw: int, long_side_length: int + ) -> Tuple[int, int]: + """ + Compute the output size given input size and target long side length. + """ + scale = long_side_length * 1.0 / max(oldh, oldw) + newh, neww = oldh * scale, oldw * scale + neww = int(neww + 0.5) + newh = int(newh + 0.5) + return (newh, neww) diff --git a/lisa_on_cuda/utils/__init__.py b/lisa_on_cuda/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0710ce15051e354c4a3e168e001d779ff538f3cb --- /dev/null +++ b/lisa_on_cuda/utils/__init__.py @@ -0,0 +1,3 @@ +from . import app_helpers +from . import constants +from . import utils diff --git a/lisa_on_cuda/utils/app_helpers.py b/lisa_on_cuda/utils/app_helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..9cb28b7e87f09ba8667a9d32feb9406be72f33c7 --- /dev/null +++ b/lisa_on_cuda/utils/app_helpers.py @@ -0,0 +1,498 @@ +import argparse +import logging +import os +import re +from typing import Callable + +import cv2 +import gradio as gr +import nh3 +import numpy as np +import torch +import torch.nn.functional as F +from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor + +from lisa_on_cuda import app_logger +from lisa_on_cuda.LISA import LISAForCausalLM +from lisa_on_cuda.llava import conversation as conversation_lib +from lisa_on_cuda.llava.mm_utils import tokenizer_image_token +from lisa_on_cuda.segment_anything.utils.transforms import ResizeLongestSide +from . import constants, utils + +placeholders = utils.create_placeholder_variables() + + +def get_device_map_kwargs(device_map="auto", device="cuda"): + kwargs = {"device_map": device_map} + if device != "cuda": + kwargs['device_map'] = {"": device} + return kwargs + + +def parse_args(args_to_parse, internal_logger=None): + if internal_logger is None: + internal_logger = app_logger + internal_logger.info(f"ROOT_PROJECT:{utils.PROJECT_ROOT_FOLDER}, default vis_output:{utils.VIS_OUTPUT}.") + parser = argparse.ArgumentParser(description="LISA chat") + parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1-explanatory") + parser.add_argument("--vis_save_path", default=str(utils.VIS_OUTPUT), type=str) + parser.add_argument( + "--precision", + default="fp16", + type=str, + choices=["fp32", "bf16", "fp16"], + help="precision for inference", + ) + parser.add_argument("--image_size", default=1024, type=int, help="image size") + parser.add_argument("--model_max_length", default=512, type=int) + parser.add_argument("--lora_r", default=8, type=int) + parser.add_argument( + "--vision-tower", default="openai/clip-vit-large-patch14", type=str + ) + parser.add_argument("--local-rank", default=0, type=int, help="node rank") + parser.add_argument("--load_in_8bit", action="store_true", default=False) + parser.add_argument("--load_in_4bit", action="store_true", default=True) + parser.add_argument("--use_mm_start_end", action="store_true", default=True) + parser.add_argument( + "--conv_type", + default="llava_v1", + type=str, + choices=["llava_v1", "llava_llama_2"], + ) + return parser.parse_args(args_to_parse) + + +def get_cleaned_input(input_str, internal_logger=None): + if internal_logger is None: + internal_logger = app_logger + internal_logger.info(f"start cleaning of input_str: {input_str}.") + input_str = nh3.clean( + input_str, + tags={ + "a", + "abbr", + "acronym", + "b", + "blockquote", + "code", + "em", + "i", + "li", + "ol", + "strong", + "ul", + }, + attributes={ + "a": {"href", "title"}, + "abbr": {"title"}, + "acronym": {"title"}, + }, + url_schemes={"http", "https", "mailto"}, + link_rel=None, + ) + internal_logger.info(f"cleaned input_str: {input_str}.") + return input_str + + +def set_image_precision_by_args(input_image, precision): + if precision == "bf16": + input_image = input_image.bfloat16() + elif precision == "fp16": + input_image = input_image.half() + else: + input_image = input_image.float() + return input_image + + +def preprocess( + x, + pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1), + pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1), + img_size=1024, +) -> torch.Tensor: + """Normalize pixel values and pad to a square input.""" + logging.info("preprocess started") + # Normalize colors + x = (x - pixel_mean) / pixel_std + # Pad + h, w = x.shape[-2:] + padh = img_size - h + padw = img_size - w + x = F.pad(x, (0, padw, 0, padh)) + logging.info("preprocess ended") + return x + + +def load_model_for_causal_llm_pretrained( + version, torch_dtype, load_in_8bit, load_in_4bit, seg_token_idx, vision_tower, + internal_logger: logging = None, device_map="auto", device="cuda" +): + if internal_logger is None: + internal_logger = app_logger + internal_logger.debug(f"prepare kwargs, 4bit:{load_in_4bit}, 8bit:{load_in_8bit}.") + kwargs_device_map = get_device_map_kwargs(device_map=device_map, device=device) + kwargs = {"torch_dtype": torch_dtype, **kwargs_device_map} + if load_in_4bit: + kwargs.update( + { + "torch_dtype": torch.half, + # "load_in_4bit": True, + "quantization_config": BitsAndBytesConfig( + load_in_4bit=True, + bnb_4bit_compute_dtype=torch.float16, + bnb_4bit_use_double_quant=True, + bnb_4bit_quant_type="nf4", + llm_int8_skip_modules=["visual_model"], + ), + } + ) + elif load_in_8bit: + kwargs.update( + { + "torch_dtype": torch.half, + "quantization_config": BitsAndBytesConfig( + llm_int8_skip_modules=["visual_model"], + load_in_8bit=True, + ), + } + ) + internal_logger.debug(f"start loading model:{version}.") + _model = LISAForCausalLM.from_pretrained( + version, + low_cpu_mem_usage=True, + vision_tower=vision_tower, + seg_token_idx=seg_token_idx, + # try to avoid CUDA init RuntimeError on ZeroGPU huggingface hardware (injected into kwargs) + **kwargs + ) + internal_logger.debug("model loaded!") + return _model + + +def get_model(args_to_parse, internal_logger: logging = None, inference_decorator: Callable = None, device_map="auto", device="cpu", device2="cuda"): + """Load model and inference function with arguments. Compatible with ZeroGPU (spaces 0.30.2) + + Args: + args_to_parse: default input arguments + internal_logger: logger + inference_decorator: inference decorator (now it's supported and tested ZeroGPU spaces.GPU decorator) + device_map: device type needed for ZeroGPU cuda hw + device: device type needed for ZeroGPU cuda hw + device2: device type needed for ZeroGPU cuda hw, default to cpu to avoid bug on loading model + + Returns: + inference function with LISA model + """ + if internal_logger is None: + internal_logger = app_logger + internal_logger.info(f"starting model preparation, folder creation for path: {args_to_parse.vis_save_path}.") + try: + vis_save_path_exists = os.path.isdir(args_to_parse.vis_save_path) + logging.info(f"vis_save_path_exists:{vis_save_path_exists}.") + os.makedirs(args_to_parse.vis_save_path, exist_ok=True) + except PermissionError as pex: + internal_logger.info(f"PermissionError: {pex}, folder:{args_to_parse.vis_save_path}.") + + # global tokenizer, tokenizer + # Create model + internal_logger.info(f"creating tokenizer: {args_to_parse.version}, max_length:{args_to_parse.model_max_length}.") + _tokenizer = AutoTokenizer.from_pretrained( + args_to_parse.version, + cache_dir=None, + model_max_length=args_to_parse.model_max_length, + padding_side="right", + use_fast=False, + ) + _tokenizer.pad_token = _tokenizer.unk_token + internal_logger.info("tokenizer ok") + args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0] + torch_dtype = torch.float32 + if args_to_parse.precision == "bf16": + torch_dtype = torch.bfloat16 + elif args_to_parse.precision == "fp16": + torch_dtype = torch.half + + internal_logger.debug(f"start loading causal llm:{args_to_parse.version}...") + _model = inference_decorator( + load_model_for_causal_llm_pretrained( + args_to_parse.version, + torch_dtype=torch_dtype, + load_in_8bit=args_to_parse.load_in_8bit, + load_in_4bit=args_to_parse.load_in_4bit, + seg_token_idx=args_to_parse.seg_token_idx, + vision_tower=args_to_parse.vision_tower, + device_map=device_map, # try to avoid CUDA init RuntimeError on ZeroGPU huggingface hardware + device=device + )) if inference_decorator else load_model_for_causal_llm_pretrained( + args_to_parse.version, + torch_dtype=torch_dtype, + load_in_8bit=args_to_parse.load_in_8bit, + load_in_4bit=args_to_parse.load_in_4bit, + seg_token_idx=args_to_parse.seg_token_idx, + vision_tower=args_to_parse.vision_tower, + device_map=device_map + ) + internal_logger.debug("causal llm loaded!") + + _model.config.eos_token_id = _tokenizer.eos_token_id + _model.config.bos_token_id = _tokenizer.bos_token_id + _model.config.pad_token_id = _tokenizer.pad_token_id + _model.get_model().initialize_vision_modules(_model.get_model().config) + + internal_logger.debug(f"start vision tower:{args_to_parse.vision_tower}...") + _model, vision_tower = inference_decorator( + prepare_model_vision_tower(_model, args_to_parse, torch_dtype) + ) if inference_decorator else prepare_model_vision_tower( + _model, args_to_parse, torch_dtype + ) + internal_logger.debug(f"_model type:{type(_model)}, vision_tower type:{type(vision_tower)}.") + # set device to "cuda" try to avoid CUDA init RuntimeError on ZeroGPU huggingface hardware + vision_tower.to(device=device2) + internal_logger.debug("vision tower loaded, prepare clip image processor...") + _clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower) + internal_logger.debug("clip image processor done.") + _transform = ResizeLongestSide(args_to_parse.image_size) + internal_logger.debug("start model evaluation...") + inference_decorator(_model.eval()) if inference_decorator else _model.eval() + internal_logger.info("model preparation ok!") + return _model, _clip_image_processor, _tokenizer, _transform + + +def prepare_model_vision_tower(_model, args_to_parse, torch_dtype, internal_logger: logging = None): + if internal_logger is None: + internal_logger = app_logger + internal_logger.debug(f"start vision tower preparation, torch dtype:{torch_dtype}, args_to_parse:{args_to_parse}.") + vision_tower = _model.get_model().get_vision_tower() + vision_tower.to(dtype=torch_dtype) + if args_to_parse.precision == "bf16": + internal_logger.debug(f"vision tower precision bf16? {args_to_parse.precision}, 1.") + _model = _model.bfloat16().cuda() + elif ( + args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit) + ): + internal_logger.debug(f"vision tower precision fp16? {args_to_parse.precision}, 2.") + vision_tower = _model.get_model().get_vision_tower() + _model.model.vision_tower = None + import deepspeed + + model_engine = deepspeed.init_inference( + model=_model, + dtype=torch.half, + replace_with_kernel_inject=True, + replace_method="auto", + ) + _model = model_engine.module + _model.model.vision_tower = vision_tower.half().cuda() + elif args_to_parse.precision == "fp32": + internal_logger.debug(f"vision tower precision fp32? {args_to_parse.precision}, 3.") + _model = _model.float().cuda() + vision_tower = _model.get_model().get_vision_tower() + internal_logger.debug("vision tower ok!") + return _model, vision_tower + + +def get_inference_model_by_args( + args_to_parse, internal_logger0: logging = None, inference_decorator: Callable = None, device_map="auto", device="cuda" +): + """Load model and inference function with arguments. Compatible with ZeroGPU (spaces 0.30.2) + + Args: + args_to_parse: default input arguments + internal_logger0: logger + inference_decorator: inference decorator (now it's supported and tested ZeroGPU spaces.GPU decorator) + device_map: device type needed for ZeroGPU cuda hw + device: device type needed for ZeroGPU cuda hw + + Returns: + inference function with LISA model + """ + if internal_logger0 is None: + internal_logger0 = app_logger + internal_logger0.info(f"args_to_parse:{args_to_parse}, creating model...") + model, clip_image_processor, tokenizer, transform = get_model(args_to_parse, device_map=device_map, device=device) + internal_logger0.info("created model, preparing inference function") + no_seg_out = placeholders["no_seg_out"] + + def inference( + input_str: str, + input_image: str | np.ndarray, + internal_logger: logging = None, + embedding_key: str = None + ): + if internal_logger is None: + internal_logger = app_logger + + # filter out special chars + input_str = get_cleaned_input(input_str) + internal_logger.info(f" input_str type: {type(input_str)}, input_image type: {type(input_image)}.") + internal_logger.info(f"input_str: {input_str}, input_image: {type(input_image)}.") + + # input valid check + if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1: + output_str = f"[Error] Unprocessable Entity input: {input_str}." + internal_logger.error(output_str) + + from fastapi import status + from fastapi.responses import JSONResponse + + return JSONResponse( + status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, + content={"msg": "Error - Unprocessable Entity"} + ) + + # Model Inference + conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy() + conv.messages = [] + + prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + input_str + if args_to_parse.use_mm_start_end: + replace_token = ( + utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN + ) + prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token) + + conv.append_message(conv.roles[0], prompt) + conv.append_message(conv.roles[1], "") + prompt = conv.get_prompt() + + internal_logger.info("read and preprocess image.") + image_np = input_image + if isinstance(input_image, str): + image_np = cv2.imread(input_image) + image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) + original_size_list = [image_np.shape[:2]] + internal_logger.debug("start clip_image_processor.preprocess") + image_clip = ( + clip_image_processor.preprocess(image_np, return_tensors="pt")[ + "pixel_values" + ][0] + .unsqueeze(0) + .cuda() + ) + internal_logger.debug("done clip_image_processor.preprocess") + internal_logger.info(f"image_clip type: {type(image_clip)}.") + image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision) + + image = transform.apply_image(image_np) + resize_list = [image.shape[:2]] + + internal_logger.debug(f"starting preprocess image: {type(image_clip)}.") + image = ( + preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()) + .unsqueeze(0) + .cuda() + ) + internal_logger.info(f"done preprocess image:{type(image)}, image_clip type: {type(image_clip)}.") + image = set_image_precision_by_args(image, args_to_parse.precision) + + input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt") + input_ids = input_ids.unsqueeze(0).cuda() + + embedding_key = get_hash_array(embedding_key, image, internal_logger) + internal_logger.info(f"start model evaluation with embedding_key {embedding_key}.") + output_ids, pred_masks = model.evaluate( + image_clip, + image, + input_ids, + resize_list, + original_size_list, + max_new_tokens=512, + tokenizer=tokenizer, + model_logger=internal_logger, + embedding_key=embedding_key + ) + internal_logger.info("model evaluation done, start token decoding...") + output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX] + + text_output = tokenizer.decode(output_ids, skip_special_tokens=False) + text_output = text_output.replace("\n", "").replace(" ", " ") + text_output = text_output.split("ASSISTANT: ")[-1] + + internal_logger.info( + f"token decoding ended,found n {len(pred_masks)} prediction masks, " + f"text_output type: {type(text_output)}, text_output: {text_output}." + ) + output_image = no_seg_out + output_mask = no_seg_out + for i, pred_mask in enumerate(pred_masks): + if pred_mask.shape[0] == 0 or pred_mask.shape[1] == 0: + continue + pred_mask = pred_mask.detach().cpu().numpy()[0] + pred_mask_bool = pred_mask > 0 + output_mask = pred_mask_bool.astype(np.uint8) * 255 + + output_image = image_np.copy() + output_image[pred_mask_bool] = ( + image_np * 0.5 + + pred_mask_bool[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5 + )[pred_mask_bool] + + output_str = f"ASSISTANT: {text_output} ..." + internal_logger.info(f"output_image type: {type(output_mask)}.") + return output_image, output_mask, output_str + + internal_logger0.info("prepared inference function.") + internal_logger0.info(f"inference decorator none? {type(inference_decorator)}.") + if inference_decorator: + return inference_decorator(inference) + + return inference + + +def get_gradio_interface( + fn_inference: Callable, + args: str = None +): + article_and_demo_parameters = constants.article + if args is not None: + article_and_demo_parameters = constants.demo_parameters + args_dict = {arg: getattr(args, arg) for arg in vars(args)} + for arg_k, arg_v in args_dict.items(): + print(f"arg_k:{arg_v}, arg_v:{arg_v}.") + article_and_demo_parameters += " * " + "".join(f"{arg_k}: {arg_v};\n") + + print(f"args_dict:{args_dict}.") + print(f"description_and_demo_parameters:{article_and_demo_parameters}.") + article_and_demo_parameters += "\n\n" + constants.article + + return gr.Interface( + fn_inference, + inputs=[ + gr.Textbox(lines=1, placeholder=None, label="Text Instruction"), + gr.Image(type="filepath", label="Input Image") + ], + outputs=[ + gr.Image(type="pil", label="segmentation Output"), + gr.Image(type="pil", label="mask Output"), + gr.Textbox(lines=1, placeholder=None, label="Text Output") + ], + title=constants.title, + description=constants.description, + article=article_and_demo_parameters, + examples=constants.examples, + allow_flagging="auto" + ) + + +def get_hash_array(embedding_key: str, arr: np.ndarray | torch.Tensor, model_logger: logging): + from base64 import b64encode + from hashlib import sha256 + + model_logger.debug(f"embedding_key {embedding_key} is None? {embedding_key is None}.") + if embedding_key is None: + img2hash = arr + if isinstance(arr, torch.Tensor): + model_logger.debug("images variable is a Tensor, start converting back to numpy") + img2hash = arr.numpy(force=True) + model_logger.debug("done Tensor converted back to numpy") + model_logger.debug("start image hashing") + img2hash_fn = sha256(img2hash) + embedding_key = b64encode(img2hash_fn.digest()) + embedding_key = embedding_key.decode("utf-8") + model_logger.debug(f"done image hashing, now embedding_key is {embedding_key}.") + return embedding_key + + +if __name__ == '__main__': + parsed_args = parse_args([]) + print("arrrrg:", parsed_args) diff --git a/lisa_on_cuda/utils/constants.py b/lisa_on_cuda/utils/constants.py new file mode 100644 index 0000000000000000000000000000000000000000..b1831ffea3f7564be1659d9a1f8e231c6ad81437 --- /dev/null +++ b/lisa_on_cuda/utils/constants.py @@ -0,0 +1,49 @@ +# Gradio +examples = [ + [ + "Where can the driver see the car speed in this image? Please output segmentation mask.", + "./resources/imgs/example1.jpg", + ], + [ + "Can you segment the food that tastes spicy and hot?", + "./resources/imgs/example2.jpg", + ], + [ + "Assuming you are an autonomous driving robot, what part of the diagram would you manipulate to control the direction of travel? Please output segmentation mask and explain why.", + "./resources/imgs/example1.jpg", + ], + [ + "What can make the woman stand higher? Please output segmentation mask and explain why.", + "./resources/imgs/example3.jpg", + ], +] +output_labels = ["Segmentation Output"] + +title = "LISA: Reasoning Segmentation via Large Language Model" +description = """ + +This is the online demo of LISA... \n +If multiple users are using it at the same time, they will enter a queue, which may delay some time. \n +**Note**: **Different prompts can lead to significantly varied results**. \n +**Note**: Please try to **standardize** your input text prompts to **avoid ambiguity**, and also pay attention to whether the **punctuations** of the input are correct. \n +**Usage**:
+ (1) To let LISA **segment something**, input prompt like: "Can you segment xxx in this image?", "What is xxx in this image? Please output segmentation mask.";
+ (2) To let LISA **output an explanation**, input prompt like: "What is xxx in this image? Please output segmentation mask and explain why.";
+ (3) To obtain **solely language output**, you can input like what you should do in current multi-modal LLM (e.g., LLaVA).
+Hope you can enjoy our work! +
+""" + +demo_parameters = """## Model configuration parameters\n +The demo uses these parameters: +""" + +article = """ +

+ +Preprint Paper + +\n +

+ Github Repo

+""" diff --git a/lisa_on_cuda/utils/utils.py b/lisa_on_cuda/utils/utils.py new file mode 100755 index 0000000000000000000000000000000000000000..2416a931ca42189adff4717209dd4ff39115c817 --- /dev/null +++ b/lisa_on_cuda/utils/utils.py @@ -0,0 +1,190 @@ +import logging +import os +from enum import Enum +from pathlib import Path + +import numpy as np +import torch +import torch.distributed as dist + + +IGNORE_INDEX = -100 +IMAGE_TOKEN_INDEX = -200 +DEFAULT_IMAGE_TOKEN = "" +DEFAULT_IMAGE_PATCH_TOKEN = "" +DEFAULT_IM_START_TOKEN = "" +DEFAULT_IM_END_TOKEN = "" + +SHORT_QUESTION_LIST = [ + DEFAULT_IMAGE_TOKEN + "\n" + "Can you segment the {class_name} in this image?", + DEFAULT_IMAGE_TOKEN + "\n" + "Please segment the {class_name} in this image.", + DEFAULT_IMAGE_TOKEN + + "\n" + + "What is {class_name} in this image? Please respond with segmentation mask.", + DEFAULT_IMAGE_TOKEN + + "\n" + + "What is {class_name} in this image? Please output segmentation mask.", +] + +LONG_QUESTION_LIST = [ + DEFAULT_IMAGE_TOKEN + "\n" + "{sent} Please respond with segmentation mask.", + DEFAULT_IMAGE_TOKEN + "\n" + "{sent} Please output segmentation mask.", +] + +EXPLANATORY_QUESTION_LIST = [ + "Please output segmentation mask and explain why.", + "Please output segmentation mask and explain the reason.", + "Please output segmentation mask and give some explanation.", +] + +ANSWER_LIST = [ + "It is [SEG].", + "Sure, [SEG].", + "Sure, it is [SEG].", + "Sure, the segmentation result is [SEG].", + "[SEG].", +] +ROOT = Path(__file__).parent.parent.parent +PROJECT_ROOT_FOLDER = os.getenv("PROJECT_ROOT_FOLDER", ROOT) +RESOURCES_FOLDER = os.getenv("RESOURCES_FOLDER", Path(PROJECT_ROOT_FOLDER) / "resources") +FASTAPI_STATIC = os.getenv("FASTAPI_STATIC", ROOT / "static") +VIS_OUTPUT = os.getenv("VIS_OUTPUT", ROOT / "vis_output") + + +class Summary(Enum): + NONE = 0 + AVERAGE = 1 + SUM = 2 + COUNT = 3 + + +class AverageMeter(object): + """Computes and stores the average and current value""" + + def __init__(self, name, fmt=":f", summary_type=Summary.AVERAGE): + self.name = name + self.fmt = fmt + self.summary_type = summary_type + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + def all_reduce(self): + device = "cuda" if torch.cuda.is_available() else "cpu" + if isinstance(self.sum, np.ndarray): + total = torch.tensor( + self.sum.tolist() + + [ + self.count, + ], + dtype=torch.float32, + device=device, + ) + else: + total = torch.tensor( + [self.sum, self.count], dtype=torch.float32, device=device + ) + + dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False) + if total.shape[0] > 2: + self.sum, self.count = total[:-1].cpu().numpy(), total[-1].cpu().item() + else: + self.sum, self.count = total.tolist() + self.avg = self.sum / (self.count + 1e-5) + + def __str__(self): + fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" + return fmtstr.format(**self.__dict__) + + def summary(self): + fmtstr = "" + if self.summary_type is Summary.NONE: + fmtstr = "" + elif self.summary_type is Summary.AVERAGE: + fmtstr = "{name} {avg:.3f}" + elif self.summary_type is Summary.SUM: + fmtstr = "{name} {sum:.3f}" + elif self.summary_type is Summary.COUNT: + fmtstr = "{name} {count:.3f}" + else: + raise ValueError("invalid summary type %r" % self.summary_type) + + return fmtstr.format(**self.__dict__) + + +def intersectionAndUnionGPU(output, target, K, ignore_index=255): + # 'K' classes, output and target sizes are N or N * L or N * H * W, each value in range 0 to K - 1. + assert output.dim() in [1, 2, 3] + assert output.shape == target.shape + output = output.view(-1) + target = target.view(-1) + output[target == ignore_index] = ignore_index + intersection = output[output == target] + area_intersection = torch.histc(intersection, bins=K, min=0, max=K - 1) + area_output = torch.histc(output, bins=K, min=0, max=K - 1) + area_target = torch.histc(target, bins=K, min=0, max=K - 1) + area_union = area_output + area_target - area_intersection + return area_intersection, area_union, area_target + + +class ProgressMeter(object): + def __init__(self, num_batches, meters, prefix=""): + self.batch_fmtstr = self._get_batch_fmtstr(num_batches) + self.meters = meters + self.prefix = prefix + + def display(self, batch): + entries = [self.prefix + self.batch_fmtstr.format(batch)] + entries += [str(meter) for meter in self.meters] + print("\t".join(entries)) + + def display_summary(self): + entries = [" *"] + entries += [meter.summary() for meter in self.meters] + print(" ".join(entries)) + + def _get_batch_fmtstr(self, num_batches): + num_digits = len(str(num_batches // 1)) + fmt = "{:" + str(num_digits) + "d}" + return "[" + fmt + "/" + fmt.format(num_batches) + "]" + + +def dict_to_cuda(input_dict): + for k, v in input_dict.items(): + if isinstance(input_dict[k], torch.Tensor): + input_dict[k] = v.cuda(non_blocking=True) + elif ( + isinstance(input_dict[k], list) + and len(input_dict[k]) > 0 + and isinstance(input_dict[k][0], torch.Tensor) + ): + input_dict[k] = [ele.cuda(non_blocking=True) for ele in v] + return input_dict + + +def create_placeholder_variables(): + import cv2 + + try: + placeholders_folder = Path(RESOURCES_FOLDER) / "placeholders" + logging.info(f"placeholders_folder:{placeholders_folder}.") + no_seg_out = cv2.imread(str(placeholders_folder / "no_seg_out.png"))[:, :, ::-1] + error_happened = cv2.imread(str(placeholders_folder / "error_happened.png"))[:, :, ::-1] + except Exception as e: + logging.error(f"e:{e}.") + logging.error(f"ROOT:{ROOT}.") + no_seg_out = error_happened = np.zeros((100, 100, 3)) + return { + "no_seg_out": no_seg_out, + "error_happened": error_happened + } diff --git a/pyproject.toml b/pyproject.toml index 6d40edf38a101cc2c5ee0ed753241abeec7f851b..65115ddd680fc2b64e07db14b0b3070335ca74e5 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -13,7 +13,33 @@ version = "1.5.6" [tool.poetry.dependencies] python = ">=3.10,<3.11" -samgis-lisa = "1.0.8" +bitsandbytes = "^0.42.0" +einops = "^0.8.0" +fastapi = "^0.111.0" +markdown2 = "^2.4.13" +nh3 = "^0.2.18" +numpy = [ + {version = "1.25.2", python = "~3.10"}, + {version = "^1.26", python = "~3.11"} +] +openai = "^1.35.12" +opencv-python-headless = "4.8.1.78" +packaging = "^24.1" +peft-patched = "0.9.3" +pycocotools = "^2.0.8" +python = ">=3.10, <3.12" +requests = "^2.32.3" +samgis-core = "3.0.13" +samgis-web = "1.0.14" +scipy = "^1.14.0" +sentencepiece = "^0.2.0" +shortuuid = "^1.0.13" +spaces = "0.30.2" +torch = "2.4.0" +torchvision = "0.19.0" +tqdm = "^4.66.4" +transformers-backport = "4.31.2" +uvicorn = "^0.30.1" [tool.poetry.group.test] optional = true diff --git a/requirements.txt b/requirements.txt index 8c262cec7063b094d24bad371005b0e66bc2f2bb..534d47be885479d0b7fb777afa32964026e99f51 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1 +1,22 @@ -samgis-lisa==1.0.8 +bitsandbytes==0.42.0 +einops==0.8.0 +fastapi==0.111.1 +markdown2==2.5.0 +nh3==0.2.18 +numpy==1.25.2 +openai==1.45.0 +opencv-python-headless==4.10.0.84 +packaging +peft-patched==0.9.3 +pycocotools==2.0.8 +requests==2.32.3 +samgis_core==3.0.13 +samgis-web==1.0.14 +scipy==1.14.1 +sentencepiece==0.2.0 +shortuuid==1.0.13 +torch==2.4.0 +torchvision==0.19.0 +tqdm==4.66.5 +transformers-backport==4.31.2 +uvicorn==0.30.6 diff --git a/samgis_lisa/__init__.py b/samgis_lisa/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..930e48d97137afeb6b7600610616a97c720f5f63 --- /dev/null +++ b/samgis_lisa/__init__.py @@ -0,0 +1,16 @@ +"""Get machine learning predictions from geodata raster images""" +import os + +import structlog.stdlib +from pathlib import Path + +from samgis_core.utilities import session_logger +from samgis_web.utilities.constants import SERVICE_NAME + + +ROOT = Path(globals().get("__file__", "./_")).absolute().parent.parent +PROJECT_ROOT_FOLDER = Path(os.getenv("PROJECT_ROOT_FOLDER", ROOT)) + +loglevel = os.getenv('LOGLEVEL', 'INFO').upper() +session_logger.setup_logging(log_level=loglevel) +app_logger = structlog.stdlib.get_logger(__name__) diff --git a/samgis_lisa/__version__.py b/samgis_lisa/__version__.py new file mode 100644 index 0000000000000000000000000000000000000000..7003e8488ecc95763bea057502cf47936b843547 --- /dev/null +++ b/samgis_lisa/__version__.py @@ -0,0 +1,8 @@ +import importlib.metadata + + +try: + __version__ = importlib.metadata.version(__package__ or __name__) +except importlib.metadata.PackageNotFoundError or ImportError as e: + print(f"metadata::e: {type(e)}, {e}: package installed?") + __version__ = "1.0.0" diff --git a/samgis_lisa/io_package/__init__.py b/samgis_lisa/io_package/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..7764f640eb51699afe9108a1655e58eec31bd492 --- /dev/null +++ b/samgis_lisa/io_package/__init__.py @@ -0,0 +1 @@ +"""input/output helpers functions""" diff --git a/samgis_lisa/io_package/wrappers_helpers.py b/samgis_lisa/io_package/wrappers_helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..5d0c8809e842046b5bff6d4d7326aeb17346cb22 --- /dev/null +++ b/samgis_lisa/io_package/wrappers_helpers.py @@ -0,0 +1,49 @@ +"""lambda helper functions""" +from typing import Dict + +from lisa_on_cuda.utils.app_helpers import get_cleaned_input +from samgis_web.web.web_helpers import get_url_tile, get_source_name + +from samgis_lisa import app_logger +from samgis_lisa.utilities.type_hints import StringPromptApiRequestBody + + +def get_parsed_bbox_points_with_string_prompt(request_input: StringPromptApiRequestBody) -> Dict: + """ + Parse the raw input request into bbox, prompt string and zoom + + Args: + request_input: input dict + + Returns: + dict with bounding box, prompt string and zoom + """ + + app_logger.info(f"try to parsing input request: {type(request_input)}, {request_input}...") + if isinstance(request_input, str): + app_logger.info(f"string/json input, parsing it to {type(StringPromptApiRequestBody)}...") + request_input = StringPromptApiRequestBody.model_validate_json(request_input) + app_logger.info(f"parsed input, now of type {type(request_input)}...") + + bbox = request_input.bbox + app_logger.debug(f"request bbox: {type(bbox)}, value:{bbox}.") + ne = bbox.ne + sw = bbox.sw + app_logger.debug(f"request ne: {type(ne)}, value:{ne}.") + app_logger.debug(f"request sw: {type(sw)}, value:{sw}.") + ne_latlng = [float(ne.lat), float(ne.lng)] + sw_latlng = [float(sw.lat), float(sw.lng)] + new_zoom = int(request_input.zoom) + cleaned_prompt = get_cleaned_input(request_input.string_prompt) + + app_logger.debug(f"bbox => {bbox}.") + app_logger.debug(f'request_input-prompt cleaned => {cleaned_prompt}.') + + app_logger.info("unpacking elaborated request...") + return { + "bbox": [ne_latlng, sw_latlng], + "prompt": cleaned_prompt, + "zoom": new_zoom, + "source": get_url_tile(request_input.source_type), + "source_name": get_source_name(request_input.source_type) + } diff --git a/samgis_lisa/prediction_api/__init__.py b/samgis_lisa/prediction_api/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a9f6af018de38c279a5ac862cdcc83dcc6e13714 --- /dev/null +++ b/samgis_lisa/prediction_api/__init__.py @@ -0,0 +1 @@ +"""functions useful to handle machine learning models""" diff --git a/samgis_lisa/prediction_api/global_models.py b/samgis_lisa/prediction_api/global_models.py new file mode 100644 index 0000000000000000000000000000000000000000..8eea8a16e9bc0efb157c2081c6221daa1a41bcec --- /dev/null +++ b/samgis_lisa/prediction_api/global_models.py @@ -0,0 +1,6 @@ +models_dict = { + "fastsam": {"instance": None}, + "lisa": {"inference": None} +} +embedding_dict = {} +inference_fn_dict = {} diff --git a/samgis_lisa/prediction_api/lisa.py b/samgis_lisa/prediction_api/lisa.py new file mode 100644 index 0000000000000000000000000000000000000000..cca545ffcfdd1c27c56b9d2a5d8db0b76eaa7c24 --- /dev/null +++ b/samgis_lisa/prediction_api/lisa.py @@ -0,0 +1,151 @@ +from datetime import datetime +from typing import Callable + +from samgis_core.utilities.type_hints import LlistFloat, DictStrInt +from samgis_web.io_package.geo_helpers import get_vectorized_raster_as_geojson +from samgis_web.io_package.raster_helpers import write_raster_tiff, write_raster_png +from samgis_web.io_package.tms2geotiff import download_extent +from samgis_web.utilities.constants import DEFAULT_URL_TILES + +from samgis_lisa import app_logger +from samgis_lisa.utilities.constants import LISA_INFERENCE_FN + + +msg_write_tmp_on_disk = "found option to write images and geojson output..." + + +def load_model_and_inference_fn( + inference_function_name_key: str, inference_decorator: Callable = None, device_map="auto", device="cuda" + ): + """ + If missing, instantiate the inference function as reference the inference_function_name_key + using the global object models_dict + + Args: + inference_function_name_key: machine learning model name + inference_decorator: inference decorator like ZeroGPU (e.g. spaces.GPU) + device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*): + A map that specifies where each submodule should go. It doesn't need to be refined to each + parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the + same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank + like `1`) on which the model will be allocated, the device map will map the entire model to this + device. Passing `device_map = 0` means put the whole model on GPU 0. + In this specific case 'device_map' should avoid a CUDA init RuntimeError when during model loading on + ZeroGPU huggingface hardware + device: device useful with 'device_map'. In this specific case 'device_map' should avoid a CUDA init + RuntimeError when during model loading on ZeroGPU huggingface hardware + """ + from lisa_on_cuda.utils import app_helpers + from samgis_lisa.prediction_api.global_models import models_dict + + if models_dict[inference_function_name_key]["inference"] is None: + msg = f"missing inference function {inference_function_name_key}, " + msg += "instantiating it now" + if inference_decorator: + msg += f" using the inference decorator {inference_decorator.__name__}" + msg += "..." + app_logger.info(msg) + parsed_args = app_helpers.parse_args([]) + inference_fn = app_helpers.get_inference_model_by_args( + parsed_args, + internal_logger0=app_logger, + inference_decorator=inference_decorator, + device_map=device_map, + device=device + ) + models_dict[inference_function_name_key]["inference"] = inference_fn + + +def lisa_predict( + bbox: LlistFloat, + prompt: str, + zoom: float, + inference_function_name_key: str = LISA_INFERENCE_FN, + source: str = DEFAULT_URL_TILES, + source_name: str = None, + inference_decorator: Callable = None, + device_map="auto", + device="cuda", +) -> DictStrInt: + """ + Return predictions as a geojson from a geo-referenced image using the given input prompt. + + 1. if necessary instantiate a segment anything machine learning instance model + 2. download a geo-referenced raster image delimited by the coordinates bounding box (bbox) + 3. get a prediction image from the segment anything instance model using the input prompt + 4. get a geo-referenced geojson from the prediction image + + Args: + bbox: coordinates bounding box + prompt: machine learning input prompt + zoom: Level of detail + inference_function_name_key: machine learning model name + source: xyz + source_name: name of tile provider + inference_decorator: inference decorator like ZeroGPU (spaces.GPU) + device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*): + A map that specifies where each submodule should go. It doesn't need to be refined to each + parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the + same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank + like `1`) on which the model will be allocated, the device map will map the entire model to this + device. Passing `device_map = 0` means put the whole model on GPU 0. + In this specific case 'device_map' should avoid a CUDA init RuntimeError when during model loading on + ZeroGPU huggingface hardware + device: device useful with 'device_map'. In this specific case 'device_map' should avoid a CUDA init + RuntimeError when during model loading on ZeroGPU huggingface hardware + + Returns: + dict containing the output geojson, the geojson shapes number and a machine learning textual output string + """ + from os import getenv + from samgis_lisa.prediction_api.global_models import models_dict + + if source_name is None: + source_name = str(source) + + msg_start = "start lisa inference" + if inference_decorator: + msg_start += f", using the inference decorator {inference_decorator.__name__}" + msg_start += "..." + app_logger.info(msg_start) + app_logger.debug(f"type(source):{type(source)}, source:{source},") + app_logger.debug(f"type(source_name):{type(source_name)}, source_name:{source_name}.") + + load_model_and_inference_fn( + inference_function_name_key, inference_decorator=inference_decorator, device_map=device_map, device=device + ) + app_logger.debug(f"using a '{inference_function_name_key}' instance model...") + inference_fn = models_dict[inference_function_name_key]["inference"] + app_logger.info(f"loaded inference function '{inference_fn.__name__}'.") + + pt0, pt1 = bbox + app_logger.info(f"tile_source: {source}: downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.") + img, transform = download_extent(w=pt1[1], s=pt1[0], e=pt0[1], n=pt0[0], zoom=zoom, source=source) + app_logger.info( + f"img type {type(img)} with shape/size:{img.size}, transform type: {type(transform)}, transform:{transform}.") + folder_write_tmp_on_disk = getenv("WRITE_TMP_ON_DISK", "") + prefix = f"w{pt1[1]},s{pt1[0]},e{pt0[1]},n{pt0[0]}_" + if bool(folder_write_tmp_on_disk): + now = datetime.now().strftime('%Y%m%d_%H%M%S') + app_logger.info(msg_write_tmp_on_disk + f"with coords {prefix}, shape:{img.shape}, {len(img.shape)}.") + if img.shape and len(img.shape) == 2: + write_raster_tiff(img, transform, f"{source_name}_{prefix}_{now}_", "raw_tiff", folder_write_tmp_on_disk) + if img.shape and len(img.shape) == 3 and img.shape[2] == 3: + write_raster_png(img, transform, f"{source_name}_{prefix}_{now}_", "raw_img", folder_write_tmp_on_disk) + else: + app_logger.info("keep all temp data in memory...") + + app_logger.info(f"lisa_zero, source_name:{source_name}, source_name type:{type(source_name)}.") + app_logger.info(f"lisa_zero, prompt type:{type(prompt)}.") + app_logger.info(f"lisa_zero, prompt:{prompt}.") + prompt_str = str(prompt) + app_logger.info(f"lisa_zero, img type:{type(img)}.") + embedding_key = f"{source_name}_z{zoom}_{prefix}" + _, mask, output_string = inference_fn(input_str=prompt_str, input_image=img, embedding_key=embedding_key) + app_logger.info(f"lisa_zero, output_string type:{type(output_string)}.") + app_logger.info(f"lisa_zero, mask_output type:{type(mask)}.") + app_logger.info(f"created output_string '{output_string}', preparing conversion to geojson...") + return { + "output_string": output_string, + **get_vectorized_raster_as_geojson(mask, transform) + } diff --git a/samgis_lisa/utilities/__init__.py b/samgis_lisa/utilities/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0cde7d7a52b7f8dc8906c9205c932557aa1d671f --- /dev/null +++ b/samgis_lisa/utilities/__init__.py @@ -0,0 +1 @@ +"""various helpers functions""" diff --git a/samgis_lisa/utilities/constants.py b/samgis_lisa/utilities/constants.py new file mode 100644 index 0000000000000000000000000000000000000000..7e997778c539a400e84a74b764f52ee73612443d --- /dev/null +++ b/samgis_lisa/utilities/constants.py @@ -0,0 +1,2 @@ +"""Project constants""" +LISA_INFERENCE_FN = "lisa" diff --git a/samgis_lisa/utilities/type_hints.py b/samgis_lisa/utilities/type_hints.py new file mode 100644 index 0000000000000000000000000000000000000000..c41632b2f900222e2a9b3328b0a96609f0ff123a --- /dev/null +++ b/samgis_lisa/utilities/type_hints.py @@ -0,0 +1,13 @@ +"""custom type hints""" +from pydantic import BaseModel +from samgis_web.utilities.type_hints import RawBBox + + +class StringPromptApiRequestBody(BaseModel): + """Input lambda request validator type (not yet parsed)""" + id: str = "" + bbox: RawBBox + string_prompt: str + zoom: int | float + source_type: str = "OpenStreetMap.Mapnik" + debug: bool = False