import base64 from io import BytesIO import torch from PIL import Image from transformers import StoppingCriteria from .constants import IMAGE_TOKEN_INDEX def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def process_images(images, image_processor, model_cfg): return image_processor(images, return_tensors="pt")["pixel_values"] def tokenizer_image_token( prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None ): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("")] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if ( len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id ): offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == "pt": return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f"Unsupported tensor type: {return_tensors}") return input_ids def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith("checkpoint-"): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if ( len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id ): cur_keyword_ids = cur_keyword_ids[1:] self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def __call__( self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs ) -> bool: assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO offset = min(output_ids.shape[1] - self.start_len, 3) self.keyword_ids = [ keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids ] for keyword_id in self.keyword_ids: if output_ids[0, -keyword_id.shape[0] :] == keyword_id: return True outputs = self.tokenizer.batch_decode( output_ids[:, -offset:], skip_special_tokens=True )[0] for keyword in self.keywords: if keyword in outputs: return True return False