from datetime import datetime from typing import Callable from samgis_core.utilities.type_hints import LlistFloat, DictStrInt from samgis_web.io_package.geo_helpers import get_vectorized_raster_as_geojson from samgis_web.io_package.raster_helpers import write_raster_tiff, write_raster_png from samgis_web.io_package.tms2geotiff import download_extent from samgis_web.utilities.constants import DEFAULT_URL_TILES from samgis_lisa import app_logger from samgis_lisa.utilities.constants import LISA_INFERENCE_FN msg_write_tmp_on_disk = "found option to write images and geojson output..." def load_model_and_inference_fn( inference_function_name_key: str, inference_decorator: Callable = None, device_map="auto", device="cuda" ): """ If missing, instantiate the inference function as reference the inference_function_name_key using the global object models_dict Args: inference_function_name_key: machine learning model name inference_decorator: inference decorator like ZeroGPU (e.g. spaces.GPU) device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which the model will be allocated, the device map will map the entire model to this device. Passing `device_map = 0` means put the whole model on GPU 0. In this specific case 'device_map' should avoid a CUDA init RuntimeError when during model loading on ZeroGPU huggingface hardware device: device useful with 'device_map'. In this specific case 'device_map' should avoid a CUDA init RuntimeError when during model loading on ZeroGPU huggingface hardware """ from lisa_on_cuda.utils import app_helpers from samgis_lisa.prediction_api.global_models import models_dict if models_dict[inference_function_name_key]["inference"] is None: msg = f"missing inference function {inference_function_name_key}, " msg += "instantiating it now" if inference_decorator: msg += f" using the inference decorator {inference_decorator.__name__}" msg += "..." app_logger.info(msg) parsed_args = app_helpers.parse_args([]) inference_fn = app_helpers.get_inference_model_by_args( parsed_args, internal_logger0=app_logger, inference_decorator=inference_decorator, device_map=device_map, device=device ) models_dict[inference_function_name_key]["inference"] = inference_fn def lisa_predict( bbox: LlistFloat, prompt: str, zoom: float, inference_function_name_key: str = LISA_INFERENCE_FN, source: str = DEFAULT_URL_TILES, source_name: str = None, inference_decorator: Callable = None, device_map="auto", device="cuda", ) -> DictStrInt: """ Return predictions as a geojson from a geo-referenced image using the given input prompt. 1. if necessary instantiate a segment anything machine learning instance model 2. download a geo-referenced raster image delimited by the coordinates bounding box (bbox) 3. get a prediction image from the segment anything instance model using the input prompt 4. get a geo-referenced geojson from the prediction image Args: bbox: coordinates bounding box prompt: machine learning input prompt zoom: Level of detail inference_function_name_key: machine learning model name source: xyz source_name: name of tile provider inference_decorator: inference decorator like ZeroGPU (spaces.GPU) device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*): A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank like `1`) on which the model will be allocated, the device map will map the entire model to this device. Passing `device_map = 0` means put the whole model on GPU 0. In this specific case 'device_map' should avoid a CUDA init RuntimeError when during model loading on ZeroGPU huggingface hardware device: device useful with 'device_map'. In this specific case 'device_map' should avoid a CUDA init RuntimeError when during model loading on ZeroGPU huggingface hardware Returns: dict containing the output geojson, the geojson shapes number and a machine learning textual output string """ from os import getenv from samgis_lisa.prediction_api.global_models import models_dict if source_name is None: source_name = str(source) msg_start = "start lisa inference" if inference_decorator: msg_start += f", using the inference decorator {inference_decorator.__name__}" msg_start += "..." app_logger.info(msg_start) app_logger.debug(f"type(source):{type(source)}, source:{source},") app_logger.debug(f"type(source_name):{type(source_name)}, source_name:{source_name}.") load_model_and_inference_fn( inference_function_name_key, inference_decorator=inference_decorator, device_map=device_map, device=device ) app_logger.debug(f"using a '{inference_function_name_key}' instance model...") inference_fn = models_dict[inference_function_name_key]["inference"] app_logger.info(f"loaded inference function '{inference_fn.__name__}'.") pt0, pt1 = bbox app_logger.info(f"tile_source: {source}: downloading geo-referenced raster with bbox {bbox}, zoom {zoom}.") img, transform = download_extent(w=pt1[1], s=pt1[0], e=pt0[1], n=pt0[0], zoom=zoom, source=source) app_logger.info( f"img type {type(img)} with shape/size:{img.size}, transform type: {type(transform)}, transform:{transform}.") folder_write_tmp_on_disk = getenv("WRITE_TMP_ON_DISK", "") prefix = f"w{pt1[1]},s{pt1[0]},e{pt0[1]},n{pt0[0]}_" if bool(folder_write_tmp_on_disk): now = datetime.now().strftime('%Y%m%d_%H%M%S') app_logger.info(msg_write_tmp_on_disk + f"with coords {prefix}, shape:{img.shape}, {len(img.shape)}.") if img.shape and len(img.shape) == 2: write_raster_tiff(img, transform, f"{source_name}_{prefix}_{now}_", "raw_tiff", folder_write_tmp_on_disk) if img.shape and len(img.shape) == 3 and img.shape[2] == 3: write_raster_png(img, transform, f"{source_name}_{prefix}_{now}_", "raw_img", folder_write_tmp_on_disk) else: app_logger.info("keep all temp data in memory...") app_logger.info(f"lisa_zero, source_name:{source_name}, source_name type:{type(source_name)}.") app_logger.info(f"lisa_zero, prompt type:{type(prompt)}.") app_logger.info(f"lisa_zero, prompt:{prompt}.") prompt_str = str(prompt) app_logger.info(f"lisa_zero, img type:{type(img)}.") embedding_key = f"{source_name}_z{zoom}_{prefix}" _, mask, output_string = inference_fn(input_str=prompt_str, input_image=img, embedding_key=embedding_key) app_logger.info(f"lisa_zero, output_string type:{type(output_string)}.") app_logger.info(f"lisa_zero, mask_output type:{type(mask)}.") app_logger.info(f"created output_string '{output_string}', preparing conversion to geojson...") return { "output_string": output_string, **get_vectorized_raster_as_geojson(mask, transform) }