imabackstabber
refine layout
64b1698
import os
import sys
import os.path as osp
from pathlib import Path
import cv2
import gradio as gr
import torch
import math
import spaces
try:
import mmpose
except:
os.system('pip install /home/user/app/main/transformer_utils')
os.system('cp -rf /home/user/app/assets/conversions.py /home/user/.pyenv/versions/3.9.18/lib/python3.9/site-packages/torchgeometry/core/conversions.py')
DEFAULT_MODEL='postometro' # for config
OUT_FOLDER = '/home/user/app/demo_out'
os.makedirs(OUT_FOLDER, exist_ok=True)
@spaces.GPU(enable_queue=True)
def infer(image_input, in_threshold=0.5, num_people="Single person", render_mesh=False):
num_gpus = 1 if torch.cuda.is_available() else -1
# dismiss cuda information
# print("!!! torch.cuda.is_available: ", torch.cuda.is_available())
# print("!!! torch.cuda.device_count: ", torch.cuda.device_count())
# print("CUDA version: ", torch.version.cuda)
# index = torch.cuda.current_device()
# print("CUDA current_device: ", index)
# print("CUDA device_name: ", torch.cuda.get_device_name(index))
from main.inference import Inferer
inferer = Inferer(DEFAULT_MODEL, num_gpus, OUT_FOLDER)
os.system(f'rm -rf {OUT_FOLDER}/*')
multi_person = False if (num_people == "Single person") else True
vis_img, bbox_img, num_bbox, mmdet_box = inferer.infer(image_input, in_threshold, multi_person, not(render_mesh))
return vis_img, bbox_img, "bbox num: {}\nbbox meta: {}".format(num_bbox, mmdet_box)
TITLE = '''<h1 align="center">PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</h1>'''
DESCRIPTION = '''
<b>Official Gradio demo</b> for <b>PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human Mesh Recovery</b>.<br>
<p>
Note: You can drop a image at the panel (or select one of the examples)
to obtain the 3D parametric reconstructions of the detected humans.
</p>
<p>
Check out <a href="https://arxiv.org/abs/2403.12473"><b>our paper on arxiv page</b></a>!
</p>
<p>
Our demo is built upon <a href="https://huggingface.co/spaces/caizhongang/SMPLer-X"><b>SMPLer-X</b></a>.
Thanks for their amazing works!
</p>
'''
with gr.Blocks(title="PostoMETRO", css=".gradio-container") as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Input image", elem_classes="Image")
threshold = gr.Slider(0, 1.0, value=0.2, label='BBox detection threshold',
info="PostoMETRO will take in cropped bboxes as input to produce human mesh. A small threshold will prevent redundant bboxes and vice versa.")
num_people = gr.Radio(
choices=["Single person", "Multiple people"],
value="Multiple people",
label="Number of people",
info="Choose how many people are there in the image. Default to 'Multiple people' for better visualization.",
interactive=True,
scale=1,)
mesh_as_vertices = gr.Checkbox(
label="Render as mesh",
value=True,
info="Default to render mesh for better visualization. For faster inference, one can choose to not check the box.",
interactive=True,
scale=1,)
send_button = gr.Button("Infer")
with gr.Column():
processed_frames = gr.Image(label="Rendered Results")
bbox_frames = gr.Image(label="Bbox Results")
debug_textbox = gr.Textbox(label="Debug information")
# example_images = gr.Examples([])
send_button.click(fn=infer, inputs=[image_input, threshold, num_people, mesh_as_vertices], outputs=[processed_frames, bbox_frames, debug_textbox])
# with gr.Row():
example_images = gr.Examples([
['/home/user/app/assets/01.jpg'],
['/home/user/app/assets/02.jpg'],
['/home/user/app/assets/03.jpg'],
['/home/user/app/assets/04.jpg'],
['/home/user/app/assets/05.jpg'],
['/home/user/app/assets/06.jpg'],
],
inputs=[image_input, 0.2])
#demo.queue()
demo.queue().launch(debug=True)