Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
-
import
|
4 |
|
5 |
# Load a small CPU model for text to vector processing
|
6 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
@@ -8,42 +8,18 @@ model = AutoModel.from_pretrained(model_name)
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
|
10 |
def text_to_vector(texts):
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
raise ValueError(f"Tokenization failed for sentence: '{sentence}'")
|
22 |
-
|
23 |
-
# Pass through the model
|
24 |
-
with torch.no_grad():
|
25 |
-
outputs = model(**inputs)
|
26 |
-
|
27 |
-
# Get the vector from pooler_output or handle errors
|
28 |
-
if outputs.pooler_output is None:
|
29 |
-
raise ValueError(f"No vector generated for sentence: '{sentence}'")
|
30 |
-
|
31 |
-
# Convert the vector to a list of floats
|
32 |
-
vector = outputs.pooler_output.squeeze().numpy().tolist()
|
33 |
-
|
34 |
-
# Append result as sentence and vector pair
|
35 |
-
results.append({
|
36 |
-
"sentence": sentence,
|
37 |
-
"vector": vector
|
38 |
-
})
|
39 |
-
except Exception as e:
|
40 |
-
# Handle any errors for individual sentences
|
41 |
-
results.append({
|
42 |
-
"sentence": sentence,
|
43 |
-
"vector": f"Error: {str(e)}"
|
44 |
-
})
|
45 |
|
46 |
-
return
|
47 |
|
48 |
demo = gr.Interface(
|
49 |
fn=text_to_vector,
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
+
import numpy as np
|
4 |
|
5 |
# Load a small CPU model for text to vector processing
|
6 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
|
10 |
def text_to_vector(texts):
|
11 |
+
# Tokenize the input array of sentences
|
12 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
|
13 |
+
outputs = model(**inputs)
|
14 |
+
vectors = outputs.pooler_output.detach().numpy()
|
15 |
+
|
16 |
+
# Convert each vector to a string representation and create an object
|
17 |
+
result = [
|
18 |
+
{"sentence": sentence, "vector": ", ".join(map(str, vector))}
|
19 |
+
for sentence, vector in zip(texts, vectors)
|
20 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
return result
|
23 |
|
24 |
demo = gr.Interface(
|
25 |
fn=text_to_vector,
|