File size: 1,893 Bytes
26626a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch

from gfpgan.archs.arcface_arch import BasicBlock, Bottleneck, ResNetArcFace


def test_resnetarcface():
    """Test arch: ResNetArcFace."""

    # model init and forward (gpu)
    if torch.cuda.is_available():
        net = ResNetArcFace(block='IRBlock', layers=(2, 2, 2, 2), use_se=True).cuda().eval()
        img = torch.rand((1, 1, 128, 128), dtype=torch.float32).cuda()
        output = net(img)
        assert output.shape == (1, 512)

        # -------------------- without SE block ----------------------- #
        net = ResNetArcFace(block='IRBlock', layers=(2, 2, 2, 2), use_se=False).cuda().eval()
        output = net(img)
        assert output.shape == (1, 512)


def test_basicblock():
    """Test the BasicBlock in arcface_arch"""
    block = BasicBlock(1, 3, stride=1, downsample=None).cuda()
    img = torch.rand((1, 1, 12, 12), dtype=torch.float32).cuda()
    output = block(img)
    assert output.shape == (1, 3, 12, 12)

    # ----------------- use the downsmaple module--------------- #
    downsample = torch.nn.UpsamplingNearest2d(scale_factor=0.5).cuda()
    block = BasicBlock(1, 3, stride=2, downsample=downsample).cuda()
    img = torch.rand((1, 1, 12, 12), dtype=torch.float32).cuda()
    output = block(img)
    assert output.shape == (1, 3, 6, 6)


def test_bottleneck():
    """Test the Bottleneck in arcface_arch"""
    block = Bottleneck(1, 1, stride=1, downsample=None).cuda()
    img = torch.rand((1, 1, 12, 12), dtype=torch.float32).cuda()
    output = block(img)
    assert output.shape == (1, 4, 12, 12)

    # ----------------- use the downsmaple module--------------- #
    downsample = torch.nn.UpsamplingNearest2d(scale_factor=0.5).cuda()
    block = Bottleneck(1, 1, stride=2, downsample=downsample).cuda()
    img = torch.rand((1, 1, 12, 12), dtype=torch.float32).cuda()
    output = block(img)
    assert output.shape == (1, 4, 6, 6)