gfp-Gans / tests /test_gfpgan_model.py
ali-ghamdan's picture
lol
26626a1
raw
history blame
5.71 kB
import tempfile
import torch
import yaml
from basicsr.archs.stylegan2_arch import StyleGAN2Discriminator
from basicsr.data.paired_image_dataset import PairedImageDataset
from basicsr.losses.losses import GANLoss, L1Loss, PerceptualLoss
from gfpgan.archs.arcface_arch import ResNetArcFace
from gfpgan.archs.gfpganv1_arch import FacialComponentDiscriminator, GFPGANv1
from gfpgan.models.gfpgan_model import GFPGANModel
def test_gfpgan_model():
with open('tests/data/test_gfpgan_model.yml', mode='r') as f:
opt = yaml.load(f, Loader=yaml.FullLoader)
# build model
model = GFPGANModel(opt)
# test attributes
assert model.__class__.__name__ == 'GFPGANModel'
assert isinstance(model.net_g, GFPGANv1) # generator
assert isinstance(model.net_d, StyleGAN2Discriminator) # discriminator
# facial component discriminators
assert isinstance(model.net_d_left_eye, FacialComponentDiscriminator)
assert isinstance(model.net_d_right_eye, FacialComponentDiscriminator)
assert isinstance(model.net_d_mouth, FacialComponentDiscriminator)
# identity network
assert isinstance(model.network_identity, ResNetArcFace)
# losses
assert isinstance(model.cri_pix, L1Loss)
assert isinstance(model.cri_perceptual, PerceptualLoss)
assert isinstance(model.cri_gan, GANLoss)
assert isinstance(model.cri_l1, L1Loss)
# optimizer
assert isinstance(model.optimizers[0], torch.optim.Adam)
assert isinstance(model.optimizers[1], torch.optim.Adam)
# prepare data
gt = torch.rand((1, 3, 512, 512), dtype=torch.float32)
lq = torch.rand((1, 3, 512, 512), dtype=torch.float32)
loc_left_eye = torch.rand((1, 4), dtype=torch.float32)
loc_right_eye = torch.rand((1, 4), dtype=torch.float32)
loc_mouth = torch.rand((1, 4), dtype=torch.float32)
data = dict(gt=gt, lq=lq, loc_left_eye=loc_left_eye, loc_right_eye=loc_right_eye, loc_mouth=loc_mouth)
model.feed_data(data)
# check data shape
assert model.lq.shape == (1, 3, 512, 512)
assert model.gt.shape == (1, 3, 512, 512)
assert model.loc_left_eyes.shape == (1, 4)
assert model.loc_right_eyes.shape == (1, 4)
assert model.loc_mouths.shape == (1, 4)
# ----------------- test optimize_parameters -------------------- #
model.feed_data(data)
model.optimize_parameters(1)
assert model.output.shape == (1, 3, 512, 512)
assert isinstance(model.log_dict, dict)
# check returned keys
expected_keys = [
'l_g_pix', 'l_g_percep', 'l_g_style', 'l_g_gan', 'l_g_gan_left_eye', 'l_g_gan_right_eye', 'l_g_gan_mouth',
'l_g_comp_style_loss', 'l_identity', 'l_d', 'real_score', 'fake_score', 'l_d_r1', 'l_d_left_eye',
'l_d_right_eye', 'l_d_mouth'
]
assert set(expected_keys).issubset(set(model.log_dict.keys()))
# ----------------- remove pyramid_loss_weight-------------------- #
model.feed_data(data)
model.optimize_parameters(100000) # large than remove_pyramid_loss = 50000
assert model.output.shape == (1, 3, 512, 512)
assert isinstance(model.log_dict, dict)
# check returned keys
expected_keys = [
'l_g_pix', 'l_g_percep', 'l_g_style', 'l_g_gan', 'l_g_gan_left_eye', 'l_g_gan_right_eye', 'l_g_gan_mouth',
'l_g_comp_style_loss', 'l_identity', 'l_d', 'real_score', 'fake_score', 'l_d_r1', 'l_d_left_eye',
'l_d_right_eye', 'l_d_mouth'
]
assert set(expected_keys).issubset(set(model.log_dict.keys()))
# ----------------- test save -------------------- #
with tempfile.TemporaryDirectory() as tmpdir:
model.opt['path']['models'] = tmpdir
model.opt['path']['training_states'] = tmpdir
model.save(0, 1)
# ----------------- test the test function -------------------- #
model.test()
assert model.output.shape == (1, 3, 512, 512)
# delete net_g_ema
model.__delattr__('net_g_ema')
model.test()
assert model.output.shape == (1, 3, 512, 512)
assert model.net_g.training is True # should back to training mode after testing
# ----------------- test nondist_validation -------------------- #
# construct dataloader
dataset_opt = dict(
name='Demo',
dataroot_gt='tests/data/gt',
dataroot_lq='tests/data/gt',
io_backend=dict(type='disk'),
scale=4,
phase='val')
dataset = PairedImageDataset(dataset_opt)
dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
assert model.is_train is True
with tempfile.TemporaryDirectory() as tmpdir:
model.opt['path']['visualization'] = tmpdir
model.nondist_validation(dataloader, 1, None, save_img=True)
assert model.is_train is True
# check metric_results
assert 'psnr' in model.metric_results
assert isinstance(model.metric_results['psnr'], float)
# validation
with tempfile.TemporaryDirectory() as tmpdir:
model.opt['is_train'] = False
model.opt['val']['suffix'] = 'test'
model.opt['path']['visualization'] = tmpdir
model.opt['val']['pbar'] = True
model.nondist_validation(dataloader, 1, None, save_img=True)
# check metric_results
assert 'psnr' in model.metric_results
assert isinstance(model.metric_results['psnr'], float)
# if opt['val']['suffix'] is None
model.opt['val']['suffix'] = None
model.opt['name'] = 'demo'
model.opt['path']['visualization'] = tmpdir
model.nondist_validation(dataloader, 1, None, save_img=True)
# check metric_results
assert 'psnr' in model.metric_results
assert isinstance(model.metric_results['psnr'], float)