Spaces:
Runtime error
Runtime error
import argparse | |
import math | |
import torch | |
from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean | |
def modify_checkpoint(checkpoint_bilinear, checkpoint_clean): | |
for ori_k, ori_v in checkpoint_bilinear.items(): | |
if 'stylegan_decoder' in ori_k: | |
if 'style_mlp' in ori_k: # style_mlp_layers | |
lr_mul = 0.01 | |
prefix, name, idx, var = ori_k.split('.') | |
idx = (int(idx) * 2) - 1 | |
crt_k = f'{prefix}.{name}.{idx}.{var}' | |
if var == 'weight': | |
_, c_in = ori_v.size() | |
scale = (1 / math.sqrt(c_in)) * lr_mul | |
crt_v = ori_v * scale * 2**0.5 | |
else: | |
crt_v = ori_v * lr_mul * 2**0.5 | |
checkpoint_clean[crt_k] = crt_v | |
elif 'modulation' in ori_k: # modulation in StyleConv | |
lr_mul = 1 | |
crt_k = ori_k | |
var = ori_k.split('.')[-1] | |
if var == 'weight': | |
_, c_in = ori_v.size() | |
scale = (1 / math.sqrt(c_in)) * lr_mul | |
crt_v = ori_v * scale | |
else: | |
crt_v = ori_v * lr_mul | |
checkpoint_clean[crt_k] = crt_v | |
elif 'style_conv' in ori_k: | |
# StyleConv in style_conv1 and style_convs | |
if 'activate' in ori_k: # FusedLeakyReLU | |
# eg. style_conv1.activate.bias | |
# eg. style_convs.13.activate.bias | |
split_rlt = ori_k.split('.') | |
if len(split_rlt) == 4: | |
prefix, name, _, var = split_rlt | |
crt_k = f'{prefix}.{name}.{var}' | |
elif len(split_rlt) == 5: | |
prefix, name, idx, _, var = split_rlt | |
crt_k = f'{prefix}.{name}.{idx}.{var}' | |
crt_v = ori_v * 2**0.5 # 2**0.5 used in FusedLeakyReLU | |
c = crt_v.size(0) | |
checkpoint_clean[crt_k] = crt_v.view(1, c, 1, 1) | |
elif 'modulated_conv' in ori_k: | |
# eg. style_conv1.modulated_conv.weight | |
# eg. style_convs.13.modulated_conv.weight | |
_, c_out, c_in, k1, k2 = ori_v.size() | |
scale = 1 / math.sqrt(c_in * k1 * k2) | |
crt_k = ori_k | |
checkpoint_clean[crt_k] = ori_v * scale | |
elif 'weight' in ori_k: | |
crt_k = ori_k | |
checkpoint_clean[crt_k] = ori_v * 2**0.5 | |
elif 'to_rgb' in ori_k: # StyleConv in to_rgb1 and to_rgbs | |
if 'modulated_conv' in ori_k: | |
# eg. to_rgb1.modulated_conv.weight | |
# eg. to_rgbs.5.modulated_conv.weight | |
_, c_out, c_in, k1, k2 = ori_v.size() | |
scale = 1 / math.sqrt(c_in * k1 * k2) | |
crt_k = ori_k | |
checkpoint_clean[crt_k] = ori_v * scale | |
else: | |
crt_k = ori_k | |
checkpoint_clean[crt_k] = ori_v | |
else: | |
crt_k = ori_k | |
checkpoint_clean[crt_k] = ori_v | |
# end of 'stylegan_decoder' | |
elif 'conv_body_first' in ori_k or 'final_conv' in ori_k: | |
# key name | |
name, _, var = ori_k.split('.') | |
crt_k = f'{name}.{var}' | |
# weight and bias | |
if var == 'weight': | |
c_out, c_in, k1, k2 = ori_v.size() | |
scale = 1 / math.sqrt(c_in * k1 * k2) | |
checkpoint_clean[crt_k] = ori_v * scale * 2**0.5 | |
else: | |
checkpoint_clean[crt_k] = ori_v * 2**0.5 | |
elif 'conv_body' in ori_k: | |
if 'conv_body_up' in ori_k: | |
ori_k = ori_k.replace('conv2.weight', 'conv2.1.weight') | |
ori_k = ori_k.replace('skip.weight', 'skip.1.weight') | |
name1, idx1, name2, _, var = ori_k.split('.') | |
crt_k = f'{name1}.{idx1}.{name2}.{var}' | |
if name2 == 'skip': | |
c_out, c_in, k1, k2 = ori_v.size() | |
scale = 1 / math.sqrt(c_in * k1 * k2) | |
checkpoint_clean[crt_k] = ori_v * scale / 2**0.5 | |
else: | |
if var == 'weight': | |
c_out, c_in, k1, k2 = ori_v.size() | |
scale = 1 / math.sqrt(c_in * k1 * k2) | |
checkpoint_clean[crt_k] = ori_v * scale | |
else: | |
checkpoint_clean[crt_k] = ori_v | |
if 'conv1' in ori_k: | |
checkpoint_clean[crt_k] *= 2**0.5 | |
elif 'toRGB' in ori_k: | |
crt_k = ori_k | |
if 'weight' in ori_k: | |
c_out, c_in, k1, k2 = ori_v.size() | |
scale = 1 / math.sqrt(c_in * k1 * k2) | |
checkpoint_clean[crt_k] = ori_v * scale | |
else: | |
checkpoint_clean[crt_k] = ori_v | |
elif 'final_linear' in ori_k: | |
crt_k = ori_k | |
if 'weight' in ori_k: | |
_, c_in = ori_v.size() | |
scale = 1 / math.sqrt(c_in) | |
checkpoint_clean[crt_k] = ori_v * scale | |
else: | |
checkpoint_clean[crt_k] = ori_v | |
elif 'condition' in ori_k: | |
crt_k = ori_k | |
if '0.weight' in ori_k: | |
c_out, c_in, k1, k2 = ori_v.size() | |
scale = 1 / math.sqrt(c_in * k1 * k2) | |
checkpoint_clean[crt_k] = ori_v * scale * 2**0.5 | |
elif '0.bias' in ori_k: | |
checkpoint_clean[crt_k] = ori_v * 2**0.5 | |
elif '2.weight' in ori_k: | |
c_out, c_in, k1, k2 = ori_v.size() | |
scale = 1 / math.sqrt(c_in * k1 * k2) | |
checkpoint_clean[crt_k] = ori_v * scale | |
elif '2.bias' in ori_k: | |
checkpoint_clean[crt_k] = ori_v | |
return checkpoint_clean | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--ori_path', type=str, help='Path to the original model') | |
parser.add_argument('--narrow', type=float, default=1) | |
parser.add_argument('--channel_multiplier', type=float, default=2) | |
parser.add_argument('--save_path', type=str) | |
args = parser.parse_args() | |
ori_ckpt = torch.load(args.ori_path)['params_ema'] | |
net = GFPGANv1Clean( | |
512, | |
num_style_feat=512, | |
channel_multiplier=args.channel_multiplier, | |
decoder_load_path=None, | |
fix_decoder=False, | |
# for stylegan decoder | |
num_mlp=8, | |
input_is_latent=True, | |
different_w=True, | |
narrow=args.narrow, | |
sft_half=True) | |
crt_ckpt = net.state_dict() | |
crt_ckpt = modify_checkpoint(ori_ckpt, crt_ckpt) | |
print(f'Save to {args.save_path}.') | |
torch.save(dict(params_ema=crt_ckpt), args.save_path, _use_new_zipfile_serialization=False) | |