gfp-Gans / tests /test_stylegan2_clean_arch.py
ali-ghamdan's picture
lol
26626a1
import torch
from gfpgan.archs.stylegan2_clean_arch import StyleGAN2GeneratorClean
def test_stylegan2generatorclean():
"""Test arch: StyleGAN2GeneratorClean."""
# model init and forward (gpu)
if torch.cuda.is_available():
net = StyleGAN2GeneratorClean(
out_size=32, num_style_feat=512, num_mlp=8, channel_multiplier=1, narrow=0.5).cuda().eval()
style = torch.rand((1, 512), dtype=torch.float32).cuda()
output = net([style], input_is_latent=False)
assert output[0].shape == (1, 3, 32, 32)
assert output[1] is None
# -------------------- with return_latents ----------------------- #
output = net([style], input_is_latent=True, return_latents=True)
assert output[0].shape == (1, 3, 32, 32)
assert len(output[1]) == 1
# check latent
assert output[1][0].shape == (8, 512)
# -------------------- with randomize_noise = False ----------------------- #
output = net([style], randomize_noise=False)
assert output[0].shape == (1, 3, 32, 32)
assert output[1] is None
# -------------------- with truncation = 0.5 and mixing----------------------- #
output = net([style, style], truncation=0.5, truncation_latent=style)
assert output[0].shape == (1, 3, 32, 32)
assert output[1] is None
# ------------------ test make_noise ----------------------- #
out = net.make_noise()
assert len(out) == 7
assert out[0].shape == (1, 1, 4, 4)
assert out[1].shape == (1, 1, 8, 8)
assert out[2].shape == (1, 1, 8, 8)
assert out[3].shape == (1, 1, 16, 16)
assert out[4].shape == (1, 1, 16, 16)
assert out[5].shape == (1, 1, 32, 32)
assert out[6].shape == (1, 1, 32, 32)
# ------------------ test get_latent ----------------------- #
out = net.get_latent(style)
assert out.shape == (1, 512)
# ------------------ test mean_latent ----------------------- #
out = net.mean_latent(2)
assert out.shape == (1, 512)