Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, einsum | |
from einops import rearrange | |
from rotary_embedding_torch import RotaryEmbedding | |
from models.mossformer_gan_se.conv_module import ConvModule | |
# Helper functions | |
def exists(val): | |
""" | |
Check if a value is not None. | |
Args: | |
val: The value to check. | |
Returns: | |
bool: True if the value exists (is not None), False otherwise. | |
""" | |
return val is not None | |
def default(val, d): | |
""" | |
Return the value if it exists, otherwise return a default value. | |
Args: | |
val: The value to check. | |
d: The default value to return if val is None. | |
Returns: | |
The original value or the default value. | |
""" | |
return val if exists(val) else d | |
def padding_to_multiple_of(n, mult): | |
""" | |
Calculate padding to make a number a multiple of another number. | |
Args: | |
n (int): The number to pad. | |
mult (int): The multiple to pad to. | |
Returns: | |
int: The padding value. | |
""" | |
remainder = n % mult | |
if remainder == 0: | |
return 0 | |
return mult - remainder | |
# ScaleNorm | |
class ScaleNorm(nn.Module): | |
""" | |
Normalization layer that scales inputs based on the dimensionality of the input. | |
Args: | |
dim (int): The input dimension. | |
eps (float): A small value to prevent division by zero (default: 1e-5). | |
""" | |
def __init__(self, dim, eps=1e-5): | |
super().__init__() | |
self.scale = dim ** -0.5 # Scale factor based on input dimension | |
self.eps = eps | |
self.g = nn.Parameter(torch.ones(1)) # Learnable scale parameter | |
def forward(self, x): | |
# Normalize the input along the last dimension and apply scaling | |
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale | |
return x / norm.clamp(min=self.eps) * self.g | |
# Absolute positional encodings | |
class ScaledSinuEmbedding(nn.Module): | |
""" | |
Sine-cosine absolute positional embeddings with scaling. | |
Args: | |
dim (int): The dimension of the positional embedding. | |
""" | |
def __init__(self, dim): | |
super().__init__() | |
self.scale = nn.Parameter(torch.ones(1,)) | |
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer('inv_freq', inv_freq) # Store frequency values for sine and cosine | |
def forward(self, x): | |
# Generate sine and cosine positional encodings | |
n, device = x.shape[1], x.device | |
t = torch.arange(n, device=device).type_as(self.inv_freq) | |
sinu = einsum('i , j -> i j', t, self.inv_freq) | |
emb = torch.cat((sinu.sin(), sinu.cos()), dim=-1) | |
return emb * self.scale # Apply scaling to the positional embeddings | |
# T5 relative positional bias | |
class T5RelativePositionBias(nn.Module): | |
""" | |
Relative positional bias based on T5 model design. | |
Args: | |
scale (float): Scaling factor for the bias. | |
causal (bool): Whether to apply a causal mask (default: False). | |
num_buckets (int): Number of relative position buckets (default: 32). | |
max_distance (int): Maximum distance for relative positions (default: 128). | |
""" | |
def __init__(self, scale, causal=False, num_buckets=32, max_distance=128): | |
super().__init__() | |
self.eps = 1e-5 | |
self.scale = scale | |
self.causal = causal | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
self.relative_attention_bias = nn.Embedding(num_buckets, 1) # Bias embedding for relative positions | |
def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128): | |
""" | |
Bucket relative positions into discrete ranges for bias calculation. | |
Args: | |
relative_position (Tensor): The relative position tensor. | |
causal (bool): Whether to consider causality. | |
num_buckets (int): Number of relative position buckets. | |
max_distance (int): Maximum distance for the position. | |
Returns: | |
Tensor: Bucketed relative positions. | |
""" | |
ret = 0 | |
n = -relative_position | |
if not causal: | |
num_buckets //= 2 | |
ret += (n < 0).long() * num_buckets | |
n = torch.abs(n) | |
else: | |
n = torch.max(n, torch.zeros_like(n)) | |
max_exact = num_buckets // 2 | |
is_small = n < max_exact | |
val_if_large = max_exact + ( | |
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
).long() | |
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
ret += torch.where(is_small, n, val_if_large) | |
return ret | |
def forward(self, x): | |
# Calculate relative position bias for attention | |
i, j, device = *x.shape[-2:], x.device | |
q_pos = torch.arange(i, dtype=torch.long, device=device) | |
k_pos = torch.arange(j, dtype=torch.long, device=device) | |
rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') | |
rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets, max_distance=self.max_distance) | |
values = self.relative_attention_bias(rp_bucket) # Get bias values | |
bias = rearrange(values, 'i j 1 -> i j') | |
return bias * self.scale # Apply scaling to the bias | |
# Relative Position Embeddings | |
class RelativePosition(nn.Module): | |
""" | |
Relative positional embeddings with configurable number of units and max position. | |
Args: | |
num_units (int): The number of embedding units (default: 32). | |
max_relative_position (int): The maximum relative position (default: 128). | |
""" | |
def __init__(self, num_units=32, max_relative_position=128): | |
super().__init__() | |
self.num_units = num_units | |
self.max_relative_position = max_relative_position | |
self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units)) | |
nn.init.xavier_uniform_(self.embeddings_table) # Initialize embedding weights | |
def forward(self, x): | |
# Generate relative position embeddings | |
length_q, length_k, device = *x.shape[-2:], x.device | |
range_vec_q = torch.arange(length_q, dtype=torch.long, device=device) | |
range_vec_k = torch.arange(length_k, dtype=torch.long, device=device) | |
distance_mat = range_vec_k[None, :] - range_vec_q[:, None] # Compute relative distances | |
distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position) | |
final_mat = (distance_mat_clipped + self.max_relative_position) | |
embeddings = self.embeddings_table[final_mat] # Get embeddings based on distances | |
return embeddings | |
# Offset and Scale module | |
class OffsetScale(nn.Module): | |
""" | |
Offset and scale operation applied across heads and dimensions. | |
Args: | |
dim (int): Input dimensionality. | |
heads (int): Number of attention heads (default: 1). | |
""" | |
def __init__(self, dim, heads=1): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.ones(heads, dim)) # Learnable scaling parameter | |
self.beta = nn.Parameter(torch.zeros(heads, dim)) # Learnable offset parameter | |
nn.init.normal_(self.gamma, std=0.02) # Initialize gamma with small random values | |
def forward(self, x): | |
# Apply offset and scale across heads | |
out = einsum('... d, h d -> ... h d', x, self.gamma) + self.beta | |
return out.unbind(dim=-2) # Return the result unbound along the last head dimension | |
class FFConvM(nn.Module): | |
""" | |
FFConvM is a feedforward convolutional module that applies a series of transformations | |
to an input tensor. The transformations include normalization, linear projection, | |
activation, convolution, and dropout. It combines feedforward layers with a convolutional | |
module to enhance the feature extraction process. | |
Args: | |
dim_in: Input feature dimension. | |
dim_out: Output feature dimension. | |
norm_klass: Normalization class to apply (default is LayerNorm). | |
dropout: Dropout probability to prevent overfitting (default is 0.1). | |
""" | |
def __init__( | |
self, | |
dim_in, # Input feature dimension | |
dim_out, # Output feature dimension | |
norm_klass=nn.LayerNorm, # Normalization class (default: LayerNorm) | |
dropout=0.1 # Dropout probability | |
): | |
super().__init__() | |
# Sequentially apply normalization, linear transformation, activation, convolution, and dropout | |
self.mdl = nn.Sequential( | |
norm_klass(dim_in), # Apply normalization (LayerNorm by default) | |
nn.Linear(dim_in, dim_out), # Linear projection from dim_in to dim_out | |
nn.SiLU(), # Activation function (SiLU - Sigmoid Linear Unit) | |
ConvModule(dim_out), # Apply convolution using ConvModule | |
nn.Dropout(dropout) # Apply dropout for regularization | |
) | |
def forward(self, x): | |
""" | |
Forward pass through the module. | |
Args: | |
x: Input tensor of shape (batch_size, seq_length, dim_in) | |
Returns: | |
output: Transformed output tensor of shape (batch_size, seq_length, dim_out) | |
""" | |
output = self.mdl(x) # Pass the input through the sequential model | |
return output # Return the processed output | |
class MossFormer(nn.Module): | |
""" | |
The MossFormer class implements a transformer-based model designed for handling | |
triple-attention mechanisms with both quadratic and linear attention components. | |
The model processes inputs through token shifts, multi-head attention, and gated | |
feedforward layers, while optionally supporting causal operations. | |
Args: | |
dim (int): Dimensionality of input features. | |
group_size (int): Size of the group dimension for attention. | |
query_key_dim (int): Dimensionality of the query and key vectors for attention. | |
expansion_factor (float): Expansion factor for the hidden dimensions. | |
causal (bool): Whether to apply causal masking for autoregressive tasks. | |
dropout (float): Dropout rate for regularization. | |
norm_klass (nn.Module): Normalization layer to be applied. | |
shift_tokens (bool): Whether to apply token shifting as a preprocessing step. | |
""" | |
def __init__( | |
self, | |
dim, | |
group_size = 256, | |
query_key_dim = 128, | |
expansion_factor = 4., | |
causal = False, | |
dropout = 0.1, | |
norm_klass = nn.LayerNorm, | |
shift_tokens = True | |
): | |
super().__init__() | |
hidden_dim = int(dim * expansion_factor) | |
self.group_size = group_size | |
self.causal = causal | |
self.shift_tokens = shift_tokens | |
# Positional embeddings for attention. | |
self.rotary_pos_emb = RotaryEmbedding(dim = min(32, query_key_dim)) | |
# Dropout layer for regularization. | |
self.dropout = nn.Dropout(dropout) | |
# Projection layers for input features to hidden dimensions. | |
self.to_hidden = FFConvM( | |
dim_in = dim, | |
dim_out = hidden_dim, | |
norm_klass = norm_klass, | |
dropout = dropout, | |
) | |
self.to_qk = FFConvM( | |
dim_in = dim, | |
dim_out = query_key_dim, | |
norm_klass = norm_klass, | |
dropout = dropout, | |
) | |
self.qk_offset_scale = OffsetScale(query_key_dim, heads = 4) | |
# Output projection layer to return to original feature dimensions. | |
self.to_out = FFConvM( | |
dim_in = dim * int(expansion_factor // 2), | |
dim_out = dim, | |
norm_klass = norm_klass, | |
dropout = dropout, | |
) | |
self.gateActivate = nn.Sigmoid() | |
def forward( | |
self, | |
x, | |
*, | |
mask = None | |
): | |
""" | |
Forward pass for the MossFormer module. | |
Args: | |
x (Tensor): Input tensor of shape (B, T, Q, C) where: | |
B = batch size, | |
T = total sequence length, | |
Q = number of query features, | |
C = feature dimension. | |
mask (Tensor, optional): Attention mask for padding. | |
Returns: | |
Tensor: Output tensor of shape (B, T, C). | |
""" | |
# Unpack input dimensions | |
B, T, Q, C = x.size() | |
x = x.view(B*T, Q, C) # Reshape input for processing | |
# Prenormalization step | |
normed_x = x | |
# Optionally shift tokens for better performance | |
residual = x # Store residual for skip connection | |
if self.shift_tokens: | |
# Split and shift tokens for enhanced information flow | |
x_shift, x_pass = normed_x.chunk(2, dim = -1) | |
x_shift = F.pad(x_shift, (0, 0, 1, -1), value = 0.) # Pad to maintain shape | |
normed_x = torch.cat((x_shift, x_pass), dim = -1) | |
# Initial projections to hidden space | |
v, u = self.to_hidden(normed_x).chunk(2, dim = -1) # Split into two tensors | |
qk = self.to_qk(normed_x) # Project to query/key dimensions | |
# Offset and scale for attention | |
quad_q, lin_q, quad_k, lin_k = self.qk_offset_scale(qk) | |
att_v, att_u = self.cal_attention(x, quad_q, lin_q, quad_k, lin_k, v, u, B) | |
# Gate the outputs and apply skip connection | |
out = (att_u * v) * self.gateActivate(att_v * u) | |
x = x + self.to_out(out) # Combine with residual | |
return x | |
def cal_attention(self, x, quad_q, lin_q, quad_k, lin_k, v, u, B, mask = None): | |
""" | |
Calculates both quadratic and linear attention outputs. | |
Args: | |
x (Tensor): Input tensor of shape (B, n, d). | |
quad_q (Tensor): Quadratic queries tensor. | |
lin_q (Tensor): Linear queries tensor. | |
quad_k (Tensor): Quadratic keys tensor. | |
lin_k (Tensor): Linear keys tensor. | |
v (Tensor): Value tensor for attention. | |
u (Tensor): Auxiliary tensor for attention. | |
B (int): Batch size. | |
mask (Tensor, optional): Attention mask for padding. | |
Returns: | |
Tuple[Tensor, Tensor]: Quadratic and linear attention outputs. | |
""" | |
b, n, device, g = x.shape[0], x.shape[-2], x.device, self.group_size | |
if exists(mask): | |
# Apply mask to linear keys if provided | |
lin_mask = rearrange(mask, '... -> ... 1') | |
lin_k = lin_k.masked_fill(~lin_mask, 0.) | |
# Rotate queries and keys using positional embeddings | |
if exists(self.rotary_pos_emb): | |
quad_q, lin_q, quad_k, lin_k = map(self.rotary_pos_emb.rotate_queries_or_keys, (quad_q, lin_q, quad_k, lin_k)) | |
# Padding to handle groups | |
padding = padding_to_multiple_of(n, n) | |
if padding > 0: | |
# Pad tensors to accommodate group sizes | |
quad_q, quad_k, lin_q, lin_k, v, u = map(lambda t: F.pad(t, (0, 0, 0, padding), value = 0.), (quad_q, quad_k, lin_q, lin_k, v, u)) | |
mask = default(mask, torch.ones((b, n), device = device, dtype = torch.bool)) | |
mask = F.pad(mask, (0, padding), value = False) | |
# Reshape for grouped attention | |
quad_q, quad_k, lin_q, lin_k, v, u = map(lambda t: rearrange(t, 'b (g n) d -> b g n d', n = n), (quad_q, quad_k, lin_q, lin_k, v, u)) | |
BT, K, Q, C = quad_q.size() | |
quad_q_c = quad_q.view(B, -1, Q, C).transpose(2, 1) # Prepare for computation | |
quad_k_c = quad_k.view(B, -1, Q, C).transpose(2, 1) | |
v_c = v.view(B, -1, Q, C).transpose(2, 1) | |
u_c = u.view(B, -1, Q, C).transpose(2, 1) | |
if exists(mask): | |
mask = rearrange(mask, 'b (g j) -> b g 1 j', j = n) # Adjust mask dimensions | |
# Calculate quadratic attention output | |
sim = einsum('... i d, ... j d -> ... i j', quad_q, quad_k) / n | |
sim_c = einsum('... i d, ... j d -> ... i j', quad_q_c, quad_k_c) / quad_q_c.shape[-2] | |
# Avoid introducing infinite loss probability | |
attn = F.relu(sim) ** 2 | |
attn = self.dropout(attn) # Apply dropout for regularization | |
attn_c = F.relu(sim_c) ** 2 | |
attn_c = self.dropout(attn_c) # Apply dropout for the computed attention | |
mask_c = torch.eye(quad_q_c.shape[-2], dtype = torch.bool, device = device) | |
attn_c = attn_c.masked_fill(mask_c, 0.) # Mask diagonal for attention | |
if exists(mask): | |
attn = attn.masked_fill(~mask, 0.) # Apply the mask to the main attention | |
if self.causal: | |
# Create a causal mask for the attention | |
causal_mask = torch.ones((g, g), dtype = torch.bool, device = device).triu(1) | |
attn = attn.masked_fill(causal_mask, 0.) # Apply causal mask | |
# Calculate the output for quadratic attention | |
quad_out_v = einsum('... i j, ... j d -> ... i d', attn, v) | |
quad_out_u = einsum('... i j, ... j d -> ... i d', attn, u) | |
# Calculate output for the causal quadratic attention | |
quad_out_v_c = einsum('... i j, ... j d -> ... i d', attn_c, v_c) | |
quad_out_u_c = einsum('... i j, ... j d -> ... i d', attn_c, u_c) | |
quad_out_v_c = quad_out_v_c.transpose(2, 1).contiguous().view(BT, K, Q, C) | |
quad_out_u_c = quad_out_u_c.transpose(2, 1).contiguous().view(BT, K, Q, C) | |
# Combine the outputs from quadratic attention | |
quad_out_v = quad_out_v + quad_out_v_c | |
quad_out_u = quad_out_u + quad_out_u_c | |
# Calculate linear attention output | |
if self.causal: | |
# Handle causal linear attention | |
lin_kv = einsum('b g n d, b g n e -> b g d e', lin_k, v) / n | |
lin_kv = lin_kv.cumsum(dim = 1) # Exclusive cumulative sum | |
lin_kv = F.pad(lin_kv, (0, 0, 0, 0, 1, -1), value = 0.) | |
lin_out_v = einsum('b g d e, b g n d -> b g n e', lin_kv, lin_q) | |
lin_ku = einsum('b g n d, b g n e -> b g d e', lin_k, u) / n | |
lin_ku = lin_ku.cumsum(dim = 1) # Exclusive cumulative sum | |
lin_ku = F.pad(lin_ku, (0, 0, 0, 0, 1, -1), value = 0.) | |
lin_out_u = einsum('b g d e, b g n d -> b g n e', lin_ku, lin_q) | |
else: | |
# Handle non-causal linear attention | |
lin_kv = einsum('b g n d, b g n e -> b d e', lin_k, v) / n | |
lin_out_v = einsum('b g n d, b d e -> b g n e', lin_q, lin_kv) | |
lin_ku = einsum('b g n d, b g n e -> b d e', lin_k, u) / n | |
lin_out_u = einsum('b g n d, b d e -> b g n e', lin_q, lin_ku) | |
# Reshape and excise out padding | |
quad_attn_out_v, lin_attn_out_v = map(lambda t: rearrange(t, 'b g n d -> b (g n) d')[:, :n], (quad_out_v, lin_out_v)) | |
quad_attn_out_u, lin_attn_out_u = map(lambda t: rearrange(t, 'b g n d -> b (g n) d')[:, :n], (quad_out_u, lin_out_u)) | |
return quad_attn_out_v + lin_attn_out_v, quad_attn_out_u + lin_attn_out_u | |