Spaces:
Running
on
Zero
Running
on
Zero
alibabasglab
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -40,47 +40,6 @@ def fn_clearvoice_se(input_wav, sr):
|
|
40 |
sf.write('enhanced.wav', output_wav, fs)
|
41 |
return 'enhanced.wav'
|
42 |
|
43 |
-
@spaces.GPU
|
44 |
-
def fn_clearvoice_ss(input_wav):
|
45 |
-
myClearVoice = ClearVoice(task='speech_separation', model_names=['MossFormer2_SS_16K'])
|
46 |
-
output_wav_dict = myClearVoice(input_path=input_wav, online_write=False)
|
47 |
-
if isinstance(output_wav_dict, dict):
|
48 |
-
key = next(iter(output_wav_dict))
|
49 |
-
output_wav_list = output_wav_dict[key]
|
50 |
-
output_wav_s1 = output_wav_list[0]
|
51 |
-
output_wav_s2 = output_wav_list[1]
|
52 |
-
else:
|
53 |
-
output_wav_list = output_wav_dict
|
54 |
-
output_wav_s1 = output_wav_list[0]
|
55 |
-
output_wav_s2 = output_wav_list[1]
|
56 |
-
sf.write('separated_s1.wav', output_wav_s1, 16000)
|
57 |
-
sf.write('separated_s2.wav', output_wav_s2, 16000)
|
58 |
-
return "separated_s1.wav", "separated_s2.wav"
|
59 |
-
|
60 |
-
def find_mp4_files(directory):
|
61 |
-
mp4_files = []
|
62 |
-
|
63 |
-
# Walk through the directory and its subdirectories
|
64 |
-
for root, dirs, files in os.walk(directory):
|
65 |
-
for file in files:
|
66 |
-
# Check if the file ends with .mp4
|
67 |
-
if file.endswith(".mp4") and file[:3] == 'est':
|
68 |
-
mp4_files.append(os.path.join(root, file))
|
69 |
-
|
70 |
-
return mp4_files
|
71 |
-
|
72 |
-
|
73 |
-
@spaces.GPU()
|
74 |
-
def fn_clearvoice_tse(input_video):
|
75 |
-
myClearVoice = ClearVoice(task='target_speaker_extraction', model_names=['AV_MossFormer2_TSE_16K'])
|
76 |
-
#output_wav_dict =
|
77 |
-
print(f'input_video: {input_video}')
|
78 |
-
myClearVoice(input_path=input_video, online_write=True, output_path='path_to_output_videos_tse')
|
79 |
-
|
80 |
-
output_list = find_mp4_files(f'path_to_output_videos_tse/AV_MossFormer2_TSE_16K/{os.path.basename(input_video).split(".")[0]}/')
|
81 |
-
|
82 |
-
return output_list
|
83 |
-
|
84 |
demo = gr.Blocks()
|
85 |
|
86 |
sr_demo = gr.Interface(
|
@@ -99,52 +58,13 @@ sr_demo = gr.Interface(
|
|
99 |
"<p style='text-align: center'><a href='https://arxiv.org/abs/2312.11825' target='_blank'>MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation</a> </p>"),
|
100 |
examples = [
|
101 |
["examples/mandarin_speech_16kHz.wav", "16000 Hz"],
|
|
|
|
|
102 |
["examples/english_speech_48kHz.wav", "48000 Hz"],
|
103 |
],
|
104 |
cache_examples = True,
|
105 |
)
|
106 |
|
107 |
-
ss_demo = gr.Interface(
|
108 |
-
fn=fn_clearvoice_ss,
|
109 |
-
inputs = [
|
110 |
-
gr.Audio(label="Input Audio", type="filepath"),
|
111 |
-
],
|
112 |
-
outputs = [
|
113 |
-
gr.Audio(label="Output Audio", type="filepath"),
|
114 |
-
gr.Audio(label="Output Audio", type="filepath"),
|
115 |
-
],
|
116 |
-
title = "<a href='https://github.com/modelscope/ClearerVoice-Studio/tree/main/clearvoice' target='_blank'>ClearVoice<a/>: Speech Separation",
|
117 |
-
description = ("ClearVoice ([Github Repo](https://github.com/modelscope/ClearerVoice-Studio/tree/main/clearvoice)) is powered by AI and separates individual speech from mixed audio. It supports 16 kHz and two output streams. "
|
118 |
-
"To try it, simply upload your audio, or click one of the examples. "),
|
119 |
-
article = ("<p style='text-align: center'><a href='https://arxiv.org/abs/2302.11824' target='_blank'>MossFormer: Pushing the Performance Limit of Monaural Speech Separation using Gated Single-Head Transformer with Convolution-Augmented Joint Self-Attentions</a> </p>"
|
120 |
-
"<p style='text-align: center'><a href='https://arxiv.org/abs/2312.11825' target='_blank'>MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation</a> </p>"),
|
121 |
-
examples = [
|
122 |
-
['examples/female_female_speech.wav'],
|
123 |
-
['examples/female_male_speech.wav'],
|
124 |
-
],
|
125 |
-
cache_examples = True,
|
126 |
-
)
|
127 |
-
|
128 |
-
tse_demo = gr.Interface(
|
129 |
-
fn=fn_clearvoice_tse,
|
130 |
-
inputs = [
|
131 |
-
gr.Video(label="Input Video"),
|
132 |
-
],
|
133 |
-
outputs = [
|
134 |
-
gr.Gallery(label="Output Video List")
|
135 |
-
],
|
136 |
-
title = "<a href='https://github.com/modelscope/ClearerVoice-Studio/tree/main/clearvoice' target='_blank'>ClearVoice<a/>: Audio-Visual Speaker Extraction",
|
137 |
-
description = ("ClearVoice ([Github Repo](https://github.com/modelscope/ClearerVoice-Studio/tree/main/clearvoice)) is AI-powered and extracts each speaker's voice from a multi-speaker video using facial recognition. "
|
138 |
-
"To try it, simply upload your video, or click one of the examples. "),
|
139 |
-
# article = ("<p style='text-align: center'><a href='https://arxiv.org/abs/2302.11824' target='_blank'>MossFormer: Pushing the Performance Limit of Monaural Speech Separation using Gated Single-Head Transformer with Convolution-Augmented Joint Self-Attentions</a> | <a href='https://github.com/alibabasglab/MossFormer' target='_blank'>Github Repo</a></p>"
|
140 |
-
# "<p style='text-align: center'><a href='https://arxiv.org/abs/2312.11825' target='_blank'>MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation</a> | <a href='https://github.com/alibabasglab/MossFormer2' target='_blank'>Github Repo</a></p>"),
|
141 |
-
examples = [
|
142 |
-
['examples/001.mp4'],
|
143 |
-
['examples/002.mp4'],
|
144 |
-
],
|
145 |
-
cache_examples = True,
|
146 |
-
)
|
147 |
-
|
148 |
with demo:
|
149 |
gr.TabbedInterface([sr_demo], ["Task 4: Speech Super Resolution"])
|
150 |
|
|
|
40 |
sf.write('enhanced.wav', output_wav, fs)
|
41 |
return 'enhanced.wav'
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
demo = gr.Blocks()
|
44 |
|
45 |
sr_demo = gr.Interface(
|
|
|
58 |
"<p style='text-align: center'><a href='https://arxiv.org/abs/2312.11825' target='_blank'>MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation</a> </p>"),
|
59 |
examples = [
|
60 |
["examples/mandarin_speech_16kHz.wav", "16000 Hz"],
|
61 |
+
["examples/LJSpeech-001-0001-22k.wav", "22050 Hz"],
|
62 |
+
["examples/LibriTTS_986_129388_24k.wav", "24000 Hz"]
|
63 |
["examples/english_speech_48kHz.wav", "48000 Hz"],
|
64 |
],
|
65 |
cache_examples = True,
|
66 |
)
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
with demo:
|
69 |
gr.TabbedInterface([sr_demo], ["Task 4: Speech Super Resolution"])
|
70 |
|