Add application file
Browse files- Requriements.txt +5 -0
- config.json +27 -0
- generation_config.json +7 -0
- merges (1).txt +0 -0
- special_tokens_map.json +7 -0
- streamlit.py +142 -0
- tokenizer_config.json +10 -0
- training_args (1).bin +3 -0
- vocab (1).json +0 -0
Requriements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
Numpy
|
4 |
+
pandas
|
5 |
+
torch
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/biogpt",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"architectures": [
|
5 |
+
"BioGptForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"layerdrop": 0.0,
|
17 |
+
"max_position_embeddings": 1024,
|
18 |
+
"model_type": "biogpt",
|
19 |
+
"num_attention_heads": 16,
|
20 |
+
"num_hidden_layers": 24,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"scale_embedding": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.27.4",
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 42384
|
27 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 1,
|
6 |
+
"transformers_version": "4.27.4"
|
7 |
+
}
|
merges (1).txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "<pad>",
|
5 |
+
"sep_token": "</s>",
|
6 |
+
"unk_token": "<unk>"
|
7 |
+
}
|
streamlit.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
%%writefile app.py
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
st.title("HEALTHQUERY")
|
7 |
+
import os
|
8 |
+
import io
|
9 |
+
import requests
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
import re
|
13 |
+
import zipfile
|
14 |
+
import random
|
15 |
+
import time
|
16 |
+
import csv
|
17 |
+
import datetime
|
18 |
+
from itertools import compress
|
19 |
+
from collections import Counter, defaultdict
|
20 |
+
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
|
21 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
22 |
+
|
23 |
+
from transformers import AutoTokenizer, AutoConfig, AutoModelForPreTraining, \
|
24 |
+
AdamW, get_linear_schedule_with_warmup, \
|
25 |
+
TrainingArguments, BeamScorer, Trainer
|
26 |
+
|
27 |
+
import torch
|
28 |
+
from torch.utils.data import Dataset, random_split, DataLoader, \
|
29 |
+
RandomSampler, SequentialSampler
|
30 |
+
|
31 |
+
from IPython.display import clear_output
|
32 |
+
from transformers import BioGptTokenizer, BioGptForCausalLM, TrainerCallback
|
33 |
+
from transformers import pipeline
|
34 |
+
#summarizer_bart = pipeline("summarization", model="facebook/bart-large-cnn")
|
35 |
+
#summarizer_knnkar = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
36 |
+
summarizer_sshle = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
37 |
+
|
38 |
+
import os
|
39 |
+
DEBUG = False
|
40 |
+
|
41 |
+
INPUT_DIR = 'articles'
|
42 |
+
|
43 |
+
USE_APEX = True
|
44 |
+
APEX_OPT_LEVEL = 'O1'
|
45 |
+
|
46 |
+
MODEL = 'gpt2' #{gpt2, gpt2-medium, gpt2-large, gpt2-xl}
|
47 |
+
|
48 |
+
UNFREEZE_LAST_N = 6 #The last N layers to unfreeze for training
|
49 |
+
|
50 |
+
SPECIAL_TOKENS = { "bos_token": "<|BOS|>",
|
51 |
+
"eos_token": "<|EOS|>",
|
52 |
+
"unk_token": "<|UNK|>",
|
53 |
+
"pad_token": "<|PAD|>",
|
54 |
+
"sep_token": "<|SEP|>"}
|
55 |
+
|
56 |
+
MAXLEN = 256 #{768, 1024, 1280, 1600}
|
57 |
+
|
58 |
+
TRAIN_SIZE = 0.8
|
59 |
+
|
60 |
+
if USE_APEX:
|
61 |
+
TRAIN_BATCHSIZE = 16
|
62 |
+
BATCH_UPDATE = 128
|
63 |
+
else:
|
64 |
+
TRAIN_BATCHSIZE = 8
|
65 |
+
BATCH_UPDATE = 256
|
66 |
+
|
67 |
+
EPOCHS = 3
|
68 |
+
LR = 5e-4
|
69 |
+
EPS = 1e-8
|
70 |
+
WARMUP_STEPS = 1e2
|
71 |
+
|
72 |
+
SEED = 2020
|
73 |
+
|
74 |
+
|
75 |
+
DEVIDE_BY = 20
|
76 |
+
|
77 |
+
os.environ['WANDB_DISABLED'] = 'true'
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
|
82 |
+
model = BioGptForCausalLM.from_pretrained('/content/drive/MyDrive/All models/biogpt')
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
input_text = st.text_input("Please Provide your text:")
|
87 |
+
title = input_text
|
88 |
+
prompt = SPECIAL_TOKENS['bos_token'] + title + SPECIAL_TOKENS['sep_token']
|
89 |
+
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
|
90 |
+
device = torch.device("cuda")
|
91 |
+
generated = generated.to(device)
|
92 |
+
device = torch.device("cuda")
|
93 |
+
model.cuda()
|
94 |
+
model.eval();
|
95 |
+
from heapq import nsmallest
|
96 |
+
|
97 |
+
# Generate text
|
98 |
+
|
99 |
+
if len(input_text)>0:
|
100 |
+
sample_outputs = model.generate(generated,
|
101 |
+
do_sample=True,
|
102 |
+
max_length=MAXLEN,
|
103 |
+
top_k=10,
|
104 |
+
top_p=0.7,
|
105 |
+
temperature=0.5,
|
106 |
+
repetition_penalty=2.0,
|
107 |
+
num_return_sequences=1
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
# Initialize an empty list to store the perplexity and text pairs
|
112 |
+
perplexity_text_pairs = []
|
113 |
+
|
114 |
+
|
115 |
+
for i, sample_output in enumerate(sample_outputs):
|
116 |
+
text = tokenizer.decode(sample_output,skip_special_tokens=True)
|
117 |
+
a = len(title)+25
|
118 |
+
st.write(a)
|
119 |
+
st.write(("{}: {}\n\n".format(i+1, text[a:])))
|
120 |
+
# all questions print in above cod
|
121 |
+
bart_Val=text[a:]
|
122 |
+
#x=summarizer(bart_Val, max_length=200, min_length=30, do_sample=False)
|
123 |
+
#st.write('-------Bart summarization-----')
|
124 |
+
#st.write(x[0]['summary_text'])
|
125 |
+
|
126 |
+
#summary=summarizer_knnkar(bart_Val, max_length=200, min_length=30, do_sample=False)
|
127 |
+
#st.write('-------MEETING_SUMMARY-----')
|
128 |
+
#st.write(summary[0]['summary_text'])
|
129 |
+
|
130 |
+
distl=summarizer_sshle(bart_Val, max_length=200, min_length=30, do_sample=False)
|
131 |
+
st.write('-------distilbart_cnn_12-6 model -----')
|
132 |
+
st.write(distl[0]['summary_text'])
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
else:
|
137 |
+
st.write('Welcome to GPT2')
|
138 |
+
# Create a "Regenerate" button
|
139 |
+
|
140 |
+
|
141 |
+
# Display output
|
142 |
+
|
tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"model_max_length": 1024,
|
5 |
+
"pad_token": "<pad>",
|
6 |
+
"sep_token": "</s>",
|
7 |
+
"special_tokens_map_file": null,
|
8 |
+
"tokenizer_class": "BioGptTokenizer",
|
9 |
+
"unk_token": "<unk>"
|
10 |
+
}
|
training_args (1).bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b09e76b23eb79b374880ad63eb99198f4a78cbed763a96e46e218d6c593e787
|
3 |
+
size 3579
|
vocab (1).json
ADDED
The diff for this file is too large to render.
See raw diff
|
|